Wenlin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9627416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Absolute Determination of the Single-Photon Optomechanical Coupling Rate via a Hopf Bifurcation. Physical Review Applied, 2021, 15, .	3.8	10
2	Quantum Zeno effect in self-sustaining systems: Suppressing phase diffusion via repeated measurements. Physical Review A, 2021, 103, .	2.5	7
3	Gain-saturation-induced self-sustained oscillations in non-Hermitian optomechanics. Physical Review A, 2021, 103, .	2.5	4
4	Two–membrane Cavity Optomechanics: Non–linear Dynamics And Measurement Of The Optomechanical Coupling. , 2021, , .		0
5	Two-membrane cavity optomechanics: non-linear dynamics. New Journal of Physics, 2021, 23, 073013.	2.9	17
6	Dynamical bipartite and tripartite entanglement of mechanical oscillators in an optomechanical array. Physical Review A, 2021, 104, .	2.5	4
7	Noise robustness of synchronization of two nanomechanical resonators coupled to the same cavity field. Physical Review A, 2020, 101, .	2.5	25
8	Probing quantum gravity effects with quantum mechanical oscillators. European Physical Journal D, 2020, 74, 1.	1.3	7
9	Nonreciprocal ground-state cooling of multiple mechanical resonators. Physical Review A, 2020, 102, .	2.5	82
10	Speeding up adiabatic state conversion in optomechanical systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 115501.	1.5	15
11	Quantum synchronization in a star-type cavity QED network. Communications in Nonlinear Science and Numerical Simulation, 2017, 42, 121-131.	3.3	22
12	Theoretical realization and application of parity-time-symmetric oscillators in a quantum regime. Physical Review A, 2017, 95, .	2.5	28
13	Quantum synchronization and quantum state sharing in an irregular complex network. Physical Review E, 2017, 95, 022204.	2.1	48
14	Quantum synchronization of chaotic oscillator behaviors among coupled BEC–optomechanical systems. Quantum Information Processing, 2017, 16, 1.	2.2	10
15	Properties and relative measure for quantifying quantum synchronization. Physical Review E, 2017, 96, 012211.	2.1	33
16	Synchronization effect for uncertain quantum networks. Physica A: Statistical Mechanics and Its Applications, 2017, 465, 621-627.	2.6	2
17	Parity-time-symmetry enhanced optomechanically-induced-transparency. Scientific Reports, 2016, 6, 31095.	3.3	62
18	Synchronization transmission of target signal within the coupling network with quantum chaos effect. Physica A: Statistical Mechanics and Its Applications, 2016, 462, 579-585.	2.6	5

Wenlin Li

#	Article	IF	CITATIONS
19	Flexible and experimentally feasible shortcut to quantum Zeno dynamic passage. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3595-3600.	2.1	2
20	Synchronization between uncertain nonidentical networks with quantum chaotic behavior. Physica A: Statistical Mechanics and Its Applications, 2016, 461, 270-277.	2.6	12
21	Realization of quantum information processing in quantum star network constituted by superconducting hybrid systems. Physica A: Statistical Mechanics and Its Applications, 2016, 463, 427-436.	2.6	2
22	Quantum synchronization in an optomechanical system based on Lyapunov control. Physical Review E, 2016, 93, 062221.	2.1	66
23	Dynamics of quantum correlation of four qubits system. Physica A: Statistical Mechanics and Its Applications, 2016, 457, 437-442.	2.6	8
24	Observation of Non-Hermitian Quantum Correlation Criterion in Mesoscopic Optomechanical System. International Journal of Theoretical Physics, 2016, 55, 2097-2109.	1.2	6
25	Quantum parameter identification for a chaotic atom ensemble system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 672-677.	2.1	10
26	Criterion of quantum synchronization and controllable quantum synchronization based on an optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 035503.	1.5	20
27	Quantum Secure Direct Communication Achieved by Using Multi-Entanglement. International Journal of Theoretical Physics, 2015, 54, 100-105.	1.2	22
28	The preparation of Bell state using ground state of \$\$Lambda \$\$ ĥ -type Rb atoms in two optical cavities. Optical and Quantum Electronics, 2014, 46, 1561-1569.	3.3	2