Timothy J Beechie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9627413/publications.pdf

Version: 2024-02-01

257450 330143 3,152 39 24 37 citations g-index h-index papers 39 39 39 2452 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Process-based Principles for Restoring River Ecosystems. BioScience, 2010, 60, 209-222.	4.9	575
2	A Review of Stream Restoration Techniques and a Hierarchical Strategy for Prioritizing Restoration in Pacific Northwest Watersheds. North American Journal of Fisheries Management, 2002, 22, 1-20.	1.0	475
3	Using Beaver Dams to Restore Incised Stream Ecosystems. BioScience, 2014, 64, 279-290.	4.9	232
4	Channel pattern and river-floodplain dynamics in forested mountain river systems. Geomorphology, 2006, 78, 124-141.	2.6	226
5	Relationships between Channel Characteristics, Woody Debris, and Fish Habitat in Northwestern Washington Streams. Transactions of the American Fisheries Society, 1997, 126, 217-229.	1.4	179
6	Geomorphic changes upstream of beaver dams in Bridge Creek, an incised stream channel in the interior Columbia River basin, eastern Oregon. Earth Surface Processes and Landforms, 2007, 32, 1174-1185.	2.5	144
7	Setting River Restoration Priorities: A Review of Approaches and a General Protocol for Identifying and Prioritizing Actions. North American Journal of Fisheries Management, 2008, 28, 891-905.	1.0	144
8	Biological Impacts of the Elwha River Dams and Potential Salmonid Responses to Dam Removal. Northwest Science, 2008, 82, 72-90.	0.2	114
9	Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures. Hydrological Processes, 2015, 29, 4719-4737.	2.6	107
10	The Importance of Beaver Ponds to Coho Salmon Production in the Stillaguamish River Basin, Washington, USA. North American Journal of Fisheries Management, 2004, 24, 749-760.	1.0	92
11	Modeling Recovery Rates and Pathways for Woody Debris Recruitment in Northwestern Washington Streams. North American Journal of Fisheries Management, 2000, 20, 436-452.	1.0	86
12	A Process-Based View of Floodplain Forest Patterns in Coastal River Valleys of the Pacific Northwest. Ecosystems, 2010, 13, 1-31.	3.4	79
13	Consequences of potential density-dependent mechanisms on recovery of ocean-type chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 590-602.	1.4	78
14	A Classification of Habitat Types in a Large River and Their Use by Juvenile Salmonids. Transactions of the American Fisheries Society, 2005, 134, 717-729.	1.4	77
15	Riparian aquatic interaction simulator (RAIS): a model of riparian forest dynamics for the generation of large woody debris and shade. Forest Ecology and Management, 2002, 162, 299-318.	3.2	57
16	Incorporating climate change projections into riparian restoration planning and design. Ecohydrology, 2015, 8, 863-879.	2.4	47
17	Holocene and recent geomorphic processes, land use, and salmonid habitat in two north Puget Sound river basins. Water Science and Application, 2001, , 37-54.	0.3	45
18	Channel incision, evolution and potential recovery in the Walla Walla and Tucannon River basins, northwestern USA. Earth Surface Processes and Landforms, 2008, 33, 784-800.	2.5	43

#	Article	IF	CITATIONS
19	Empirical predictors of annual bed load travel distance, and implications for salmonid habitat restoration and protection. Earth Surface Processes and Landforms, 2001, 26, 1025-1034.	2.5	39
20	Predicting River Floodplain and Lateral Channel Migration for Salmon Habitat Conservation. Journal of the American Water Resources Association, 2007, 43, 786-797.	2.4	37
21	Does Riparian Forest Restoration Thinning Enhance Biodiversity? The Ecological Importance of Large Wood. Journal of the American Water Resources Association, 2014, 50, 543-559.	2.4	32
22	Using reference conditions in ecosystem restoration: an example for riparian conifer forests in the Pacific Northwest. Ecosphere, 2012, 3, 1-23.	2.2	29
23	Reprint of: Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change. Geomorphology, 2015, 246, 687-708.	2.6	28
24	Comparison of potential increases in juvenile salmonid rearing habitat capacity among alternative restoration scenarios, Trinity River, California. Restoration Ecology, 2015, 23, 75-84.	2.9	26
25	Review of Tools for Identifying, Planning, and Implementing Habitat Restoration for Pacific Salmon and Steelhead. North American Journal of Fisheries Management, 2018, 38, 355-376.	1.0	22
26	Large river habitat complexity and productivity of Puget Sound Chinook salmon. PLoS ONE, 2018, 13, e0205127.	2.5	21
27	Regional patterns of riparian characteristics in the interior Columbia River basin, Northwestern USA: applications for restoration planning. Landscape Ecology, 2006, 21, 1347-1360.	4.2	20
28	A Watershed Scale Assessment of Riparian Forests, with Implications for Restoration. Restoration Ecology, 2004, 12, 175-183.	2.9	16
29	Identifying the potential of anadromous salmonid habitat restoration with life cycle models. PLoS ONE, 2021, 16, e0256792.	2.5	16
30	Trends in Developed Land Cover Adjacent to Habitat for Threatened Salmon in Puget Sound, Washington, U.S.A PLoS ONE, 2015, 10, e0124415.	2.5	15
31	Incorporating parameter uncertainty into evaluation of spawning habitat limitations on Chinook salmon (Oncorhynchus tshawytscha) populations. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 1242-1250.	1.4	11
32	Historical and Future Stream Temperature Change Predicted by a Lidarâ€Based Assessment of Riparian Condition and Channel Width. Journal of the American Water Resources Association, 2018, 54, 974-991.	2.4	11
33	Restoring Rivers in the Twenty-First Century: Science Challenges in a Management Context. , 2009, , 697-717.		8
34	Influences of valley form and land use on large river and floodplain habitats in Puget Sound. River Research and Applications, 2019, 35, 133-145.	1.7	6
35	A process-based assessment of landscape change and salmon habitat losses in the Chehalis River basin, USA. PLoS ONE, 2021, 16, e0258251.	2.5	6
36	How riparian and floodplain restoration modify the effects of increasing temperature on adult salmon spawner abundance in the Chehalis River, WA. PLoS ONE, 2022, 17, e0268813.	2.5	4

#	Article	IF	CITATIONS
37	Spatially overlapping salmon species have varied population response to early life history mortality from increased peak flows. Canadian Journal of Fisheries and Aquatic Sciences, 2022, 79, 342-351.	1.4	3
38	Modeling riparian species occurrence from historical surveys to guide restoration planning in northwestern USA. Ecosphere, 2021, 12, e03525.	2.2	1
39	Empirical predictors of annual bed load travel distance, and implications for salmonid habitat restoration and protection. Earth Surface Processes and Landforms, 2001, 26, 1025-1034.	2.5	1