Tong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9626880/publications.pdf

Version: 2024-02-01

430874 434195 1,759 32 18 31 h-index citations g-index papers 32 32 32 2533 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Selective hydrogenation improves interface properties of high-k dielectrics on 2D semiconductors. Nano Research, 2022, 15, 4646-4652.	10.4	6
2	MBE-grown ultrathin PtTe ₂ films and their layer-dependent electronic structures. Nanoscale, 2022, 14, 7650-7658.	5.6	7
3	Formation of magnetic anionic electrons by hole doping. Journal of Materials Chemistry C, 2022, 10, 7674-7679.	5.5	3
4	High-Throughput Computational Discovery and Intelligent Design of Two-Dimensional Functional Materials for Various Applications. Accounts of Materials Research, 2022, 3, 572-583.	11.7	21
5	Efficient Hydrogen Evolution of Oxidized Niâ€N ₃ Defective Sites for Alkaline Freshwater and Seawater Electrolysis. Advanced Materials, 2021, 33, e2003846.	21.0	198
6	Phase stability of monolayer Silâ^'xGex alloys with a Dirac cone. Nanoscale, 2021, 13, 8607-8613.	5.6	3
7	Ag ₂ S monolayer: an ultrasoft inorganic Lieb lattice. Nanoscale, 2021, 13, 14008-14015.	5.6	10
8	Phase diagram and superlattice structures of monolayer phosphorus carbide (<mml:math) 0="" etqq0="" ov<="" rgbt="" td="" tj=""><td>verlock 10</td><td>3</td></mml:math)>	verlock 10	3
9	Quasiâ€Paired Pt Atomic Sites on Mo ₂ C Promoting Selective Fourâ€Electron Oxygen Reduction. Advanced Science, 2021, 8, e2101344.	11.2	29
10	Precise Layerâ€Dependent Electronic Structure of MBEâ€Grown PtSe ₂ . Advanced Electronic Materials, 2021, 7, 2100559.	5.1	16
11	Tunable Rashba spin-orbit coupling and its interplay with multiorbital effect and magnetic ordering at oxide interfaces. Physical Review B, 2021, 104, .	3.2	8
12	Bi-stable electronic states of cobalt phthalocyanine molecules on two-dimensional vanadium diselenide. Applied Materials Today, 2020, 18, 100535.	4.3	9
13	High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation. Nano Energy, 2020, 68, 104304.	16.0	136
14	Realization of a Buckled Antimonene Monolayer on Ag(111) via Surface Engineering. Journal of Physical Chemistry Letters, 2020, 11 , 8976-8982.	4.6	23
15	Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy, 2020, 78, 105230.	16.0	121
16	Negative Pressure Pyrolysis Induced Highly Accessible Single Sites Dispersed on 3D Graphene Frameworks for Enhanced Oxygen Reduction. Angewandte Chemie, 2020, 132, 20645-20649.	2.0	16
17	Negative Pressure Pyrolysis Induced Highly Accessible Single Sites Dispersed on 3D Graphene Frameworks for Enhanced Oxygen Reduction. Angewandte Chemie - International Edition, 2020, 59, 20465-20469.	13.8	104
18	Molecular Beam Epitaxy of Two-Dimensional Vanadium-Molybdenum Diselenide Alloys. ACS Nano, 2020, 14, 11140-11149.	14.6	28

#	Article	IF	CITATIONS
19	High-Throughput Identification of Exfoliable Two-Dimensional Materials with Active Basal Planes for Hydrogen Evolution. ACS Energy Letters, 2020, 5, 2313-2321.	17.4	54
20	Experimental Realization of One-Dimensional Metal-Inorganic Chain: Gold–Phosphorus Chain. , 2020, 2, 873-879.		9
21	Synergizing Mo Single Atoms and Mo ₂ C Nanoparticles on CNTs Synchronizes Selectivity and Activity of Electrocatalytic N ₂ Reduction to Ammonia. Advanced Materials, 2020, 32, e2002177.	21.0	190
22	Formation of two-dimensional small polarons at the conducting <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>LaAl</mml:mi><mml:msub><mml:mathvariant="normal">O<mml:mn>3</mml:mn></mml:mathvariant="normal"></mml:msub><mml:mo>/</mml:mo>SrTiO<mml:mi><mml:mn>3</mml:mn></mml:mi></mml:mrow></mml:math> interface. Physical Review B, 2019, 100, .		mആl:msub> <
23	Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient pH-Universal Catalysts for the Nitrogen Reduction Reaction. ACS Catalysis, 2019, 9, 10166-10173.	11.2	284
24	Stimulated Electrocatalytic Hydrogen Evolution Activity of MOFâ€Derived MoS ₂ Basal Domains via Charge Injection through Surface Functionalization and Heteroatom Doping. Advanced Science, 2019, 6, 1900140.	11.2	73
25	Ultrathin Transition Metal Oxide: Atomically Thin 2D Transition Metal Oxides: Structural Reconstruction, Interaction with Substrates, and Potential Applications (Adv. Mater. Interfaces) Tj ETQq $1\ 1\ 0.784$	13 3.4 rgBT	/Overlock 10
26	Atomically Thin 2D Transition Metal Oxides: Structural Reconstruction, Interaction with Substrates, and Potential Applications. Advanced Materials Interfaces, 2019, 6, 1801160.	3.7	100
27	Identification of Facetâ€Governing Reactivity in Hematite for Oxygen Evolution. Advanced Materials, 2018, 30, e1804341.	21.0	96
28	High-Throughput Computational Screening of Vertical 2D van der Waals Heterostructures for High-efficiency Excitonic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32142-32150.	8.0	75
29	Hydrogen Evolution Catalyzed by a Molybdenum Sulfide Two-Dimensional Structure with Active Basal Planes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22042-22049.	8.0	22
30	Tuning Contact Barrier Height between Metals and MoS ₂ Monolayer through Interface Engineering. Advanced Materials Interfaces, 2017, 4, 1700035.	3.7	19
31	Interfacial Interaction between HfO2 and MoS2: From Thin Films to Monolayer. Journal of Physical Chemistry C, 2016, 120, 9804-9810.	3.1	27
32	The stability of aluminium oxide monolayer and its interface with two-dimensional materials. Scientific Reports, 2016, 6, 29221.	3.3	59