Valentina Colombo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/962676/publications.pdf

Version: 2024-02-01

39 2,198 18 papers citations h-index

39 39 39 3328 all docs docs citations times ranked citing authors

39

g-index

#	Article	IF	CITATIONS
1	Stabilization by Configurational Entropy of the Cu(II) Active Site during CO Oxidation on Mg _{0.2} Co _{0.2} Ni _{0.2} Cu _{0.2} Zn _{0.2} O.2<	4.6	46
2	Selective nitrogen adsorption via backbonding in a metal–organic framework with exposed vanadium sites. Nature Materials, 2020, 19, 517-521.	27.5	121
3	Adsorption Properties of Ce5(BDC)7.5(DMF)4 MOF. Inorganics, 2020, 8, 9.	2.7	12
4	Different Metallophilic Attitudes Revealed by Compression. Inorganic Chemistry, 2020, 59, 2223-2227.	4.0	2
5	Development of Sensor Based on Copper(II) Thiocyanate Pyridine Polymeric Complex for Detection of Catechol. IEEE Sensors Journal, 2019, 19, 10198-10206.	4.7	2
6	Chiral (cyclopentadienone)iron complexes with a stereogenic plane as pre-catalysts for the asymmetric hydrogenation of polar double bonds. Tetrahedron, 2019, 75, 1415-1424.	1.9	15
7	The influence of potential stressors on oviposition site selection and subsequent growth, survival and emergence of the nonâ€biting midge (Chironomus tepperi). Ecology and Evolution, 2019, 9, 5512-5522.	1.9	2
8	A silver(<scp>i</scp>) coordination polymer with sodium 3,5-dimethyl-4-sulfonate pyrazolate: a nice example of PXRD structure solution and time-driven crystallization. CrystEngComm, 2019, 21, 4586-4592.	2.6	5
9	PIDAZTA: Structurally Constrained Chelators for the Efficient Formation of Stable Galliumâ€68 Complexes at Physiological pH. Chemistry - A European Journal, 2019, 25, 10698-10709.	3.3	11
10	Crystal structure of pirfenidone (5-methyl-1-phenyl-1 <i>H</i> -pyridin-2-one): an active pharmaceutical ingredient (API). Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 984-986.	0.5	6
11	Sol-gel TiO ₂ colloidal suspensions and nanostructured thin films: structural and biological assessments. Nanotechnology, 2018, 29, 055704.	2.6	5
12	Tailorâ€Made Microporous Metal–Organic Frameworks for the Full Separation of Propane from Propylene Through Selective Size Exclusion. Advanced Materials, 2018, 30, e1805088.	21.0	241
13	Discovery of an Optimal Porous Crystalline Material for the Capture of Chemical Warfare Agents. Chemistry of Materials, 2018, 30, 4571-4579.	6.7	62
14	Bifenthrin Causes Toxicity in Urban Stormwater Wetlands: Field and Laboratory Assessment Using <i>Austrochiltonia</i> (Amphipoda). Environmental Science & Environmental Scien	10.0	24
15	Periodical trends in [Co6E(CO)16]- clusters: Structural, synthetic and energy changes produced by substitution of P with As. Journal of Organometallic Chemistry, 2017, 849-850, 130-136.	1.8	4
16	Two-component organic crystals without hydrogen bonding: structure and intermolecular interactions in bimolecular stacking. CrystEngComm, 2017, 19, 2413-2423.	2.6	30
17	Municipal wastewater effluent licensing: A global perspective and recommendations for best practice. Science of the Total Environment, 2017, 580, 1327-1339.	8.0	31
18	A phosphorescent copper(<scp>i</scp>) coordination polymer with sodium 3,5-dimethyl-4-sulfonate pyrazolate. CrystEngComm, 2017, 19, 6020-6027.	2.6	9

#	Article	IF	CITATIONS
19	Cu(II) bifunctional (N,O,O′) coordination polymer: A case study for complex ab-initio crystal structure determination from PXRD data. Solid State Sciences, 2017, 71, 22-28.	3.2	2
20	Effects of Lumbriculus variegatus (Annelida, Oligochaete) bioturbation on zinc sediment chemistry and toxicity to the epi-benthic invertebrate Chironomus tepperi (Diptera: Chironomidae). Environmental Pollution, 2016, 216, 198-207.	7.5	18
21	Facts and Factors in the Formation and Stability of Binary Crystals. Crystal Growth and Design, 2016, 16, 6095-6104.	3.0	43
22	Synthesis, structural features and luminescence properties of a 1-D poly(azolato)-based coordination polymer. Polyhedron, 2015, 92, 130-136.	2.2	5
23	Tetrameric Silver(I) Complex with Bridging N-Heterocyclic Carbene Ligands: [(iPrlm)Ag(NO3)]4. Organometallics, 2014, 33, 5610-5613.	2.3	12
24	Improved CO ₂ Capture from Flue Gas by Basic Sites, Charge Gradients, and Missing Linker Defects on Nickel Face Cubic Centered MOFs. Advanced Functional Materials, 2014, 24, 6130-6135.	14.9	72
25	Probing Hydrogen Bond Networks in Half-Sandwich Ru(II) Building Blocks by a Combined 1H DQ CRAMPS Solid-State NMR, XRPD, and DFT Approach. Inorganic Chemistry, 2014, 53, 139-146.	4.0	14
26	Crystal Chemistry of the Antibiotic Doripenem. Journal of Pharmaceutical Sciences, 2014, 103, 3641-3647.	3.3	12
27	N-heterocyclic carbene copper complexes tethered to iron carbidocarbonyl clusters. Inorganic Chemistry Communication, 2014, 49, 27-29.	3.9	11
28	Transgenerational effects of parental nutritional status on offspring development time, survival, fecundity, and sensitivity to zinc in Chironomus tepperi midges. Ecotoxicology and Environmental Safety, 2014, 110, 1-7.	6.0	19
29	On the self-condensation of aminoguanidine leading to 1,1,4,10,10-pentaamino-2,3,5,6,8,9-hexaazadeca-1,3,5,7,9-pentaene (structure elucidation through X-ray) Tj ETC	<u>Չ</u> զ 1. 9 0.78	34314 rgBT
30	Structural Changes in a Macrozoobenthos Assemblage After Imidacloprid Pulses in Aquatic Field-Based Microcosms. Archives of Environmental Contamination and Toxicology, 2013, 65, 683-692.	4.1	35
31	Stability vs. reactivity: understanding the adsorption properties of Ni3(BTP)2 by experimental and computational methods. Dalton Transactions, 2013, 42, 6450.	3.3	27
32	Highly Hydrophobic Isoreticular Porous Metal–Organic Frameworks for the Capture of Harmful Volatile Organic Compounds. Angewandte Chemie - International Edition, 2013, 52, 8290-8294.	13.8	264
33	Spectroscopic and adsorptive studies of a thermally robust pyrazolato-based PCP. Dalton Transactions, 2012, 41, 4012.	3.3	25
34	Tuning the Adsorption Properties of Isoreticular Pyrazolate-Based Metal–Organic Frameworks through Ligand Modification. Journal of the American Chemical Society, 2012, 134, 12830-12843.	13.7	184
35	High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2011, 2, 1311.	7.4	496
36	Cubic Octanuclear Ni(II) Clusters in Highly Porous Polypyrazolyl-Based Materials. Journal of the American Chemical Society, 2010, 132, 7902-7904.	13.7	140

#	Article	IF	CITATIONS
37	Thiazolo[5,4-d]thiazole-2,5-dicarboxylic acid, C6H2N2O4S2, and its coordination polymers. Solid State Sciences, 2010, 12, 795-802.	3.2	13
38	Cationâ€Exchange Porosity Tuning in Anionic Metal–Organic Frameworks for the Selective Separation of Gases and Vapors and for Catalysis. Angewandte Chemie - International Edition, 2010, 49, 7308-7311.	13.8	152
39	Metalorganic frameworks based on the 1,4-bis(5-tetrazolyl) benzene ligand: The Ag and Cu derivatives. Inorganica Chimica Acta, 2009, 362, 4340-4346.	2.4	23