Silja Wessler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/962546/publications.pdf Version: 2024-02-01

SILIA WESSLED

#	Article	IF	CITATIONS
1	Helicobacter exploits integrin for type IV secretion and kinase activation. Nature, 2007, 449, 862-866.	13.7	571
2	A Constituent of Green Tea, Epigallocatechin-3-gallate, Activates Endothelial Nitric Oxide Synthase by a Phosphatidylinositol-3-OH-kinase-, cAMP-dependent Protein Kinase-, and Akt-dependent Pathway and Leads to Endothelial-dependent Vasorelaxation. Journal of Biological Chemistry, 2004, 279, 6190-6195.	1.6	296
3	<i>Helicobacter pylori</i> HtrA is a new secreted virulence factor that cleaves Eâ€cadherin to disrupt intercellular adhesion. EMBO Reports, 2010, 11, 798-804.	2.0	264
4	Role of the <i>cag</i> â€pathogenicity island encoded type IV secretion system in <i>Helicobacter pylori</i> pathogenesis. FEBS Journal, 2011, 278, 1190-1202.	2.2	211
5	c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. Journal of Clinical Investigation, 2012, 122, 1553-1566.	3.9	200
6	Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene, 2007, 26, 3462-3472.	2.6	163
7	Activation of Activator Protein 1 and Stress Response Kinases in Epithelial Cells Colonized by Helicobacter pylori Encoding the cag Pathogenicity Island. Journal of Biological Chemistry, 1999, 274, 31655-31662.	1.6	158
8	Distinct Roles of Secreted HtrA Proteases from Gram-negative Pathogens in Cleaving the Junctional Protein and Tumor Suppressor E-cadherin. Journal of Biological Chemistry, 2012, 287, 10115-10120.	1.6	150
9	The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Communication and Signaling, 2013, 11, 77.	2.7	150
10	Neisseria gonorrhoeae Epithelial Cell Interaction Leads to the Activation of the Transcription Factors Nuclear Factor κB and Activator Protein 1 and the Induction of Inflammatory Cytokines. Journal of Experimental Medicine, 1997, 186, 247-258.	4.2	143
11	Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin. Gut Pathogens, 2012, 4, 3.	1.6	130
12	Helicobacter pylori Employs a Unique Basolateral Type IV Secretion Mechanism for CagA Delivery. Cell Host and Microbe, 2017, 22, 552-560.e5.	5.1	125
13	<i>Helicobacter pylori</i> CagL dependent induction of gastrin expression via a novel αvβ ₅ -integrin–integrin linked kinase signalling complex. Gut, 2012, 61, 986-996.	6.1	104
14	Molecular mechanisms of epithelial-barrier disruption by Helicobacter pylori. Trends in Microbiology, 2008, 16, 397-405.	3.5	103
15	Transmigration route of Campylobacter jejuni across polarized intestinal epithelial cells: paracellular, transcellular or both?. Cell Communication and Signaling, 2013, 11, 72.	2.7	100
16	Extracellular HtrA serine proteases: An emerging new strategy in bacterial pathogenesis. Cellular Microbiology, 2018, 20, e12845.	1.1	97
17	Helicobacter pyloristimulates host cyclooxygenase-2 gene transcription: critical importance of MEK/ERK-dependent activation of USF1/-2 and CREB transcription factors. Cellular Microbiology, 2003, 5, 821-834.	1.1	87
18	Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA. Scientific Reports, 2016, 6, 23264.	1.6	77

#	Article	IF	CITATIONS
19	Prediction of Extracellular Proteases of the Human Pathogen Helicobacter pylori Reveals Proteolytic Activity of the Hp1018/19 Protein HtrA. PLoS ONE, 2008, 3, e3510.	1.1	75
20	Serine Phosphorylation of Cortactin Controls Focal Adhesion Kinase Activity and Cell Scattering Induced by Helicobacter pylori. Cell Host and Microbe, 2011, 9, 520-531.	5.1	74
21	Characterisation of worldwide <i>Helicobacter pylori</i> strains reveals genetic conservation and essentiality of serine protease HtrA. Molecular Microbiology, 2016, 99, 925-944.	1.2	70
22	p120 and Kaiso Regulate <i>Helicobacter pylori</i> -induced Expression of Matrix Metalloproteinase-7. Molecular Biology of the Cell, 2008, 19, 4110-4121.	0.9	68
23	From inflammation to gastric cancer – the importance of Hedgehog/GLI signaling in Helicobacter pylori-induced chronic inflammatory and neoplastic diseases. Cell Communication and Signaling, 2017, 15, 15.	2.7	67
24	Helicobacter pylori Activates the Histidine Decarboxylase Promoter through a Mitogen-activated Protein Kinase Pathway Independent of Pathogenicity Island-encoded Virulence Factors. Journal of Biological Chemistry, 2000, 275, 3629-3636.	1.6	66
25	CagA-independent disruption of adherence junction complexes involves E-cadherin shedding and implies multiple steps in Helicobacter pylori pathogenicity. Experimental Cell Research, 2007, 313, 3459-3471.	1.2	64
26	Emerging roles of Abl family tyrosine kinases in microbial pathogenesis. Trends in Biochemical Sciences, 2008, 33, 80-90.	3.7	64
27	Helicobacter pylori stimulates host vascular endothelial growth factorâ€A (vegfâ€A) gene expression via MEK/ERKâ€dependent activation of Sp1 and Sp3. FASEB Journal, 2004, 18, 218-220.	0.2	63
28	Context-Based Identification of Protein-Protein Interfaces and "Hot-Spot―Residues. Chemistry and Biology, 2011, 18, 344-353.	6.2	63
29	Expression of estrogen receptor alpha increases leptinâ€induced STAT3 activity in breast cancer cells. International Journal of Cancer, 2010, 127, 55-66.	2.3	54
30	Inhibitors of Helicobacter pylori Protease HtrA Found by â€~Virtual Ligand' Screening Combat Bacterial Invasion of Epithelia. PLoS ONE, 2011, 6, e17986.	1.1	52
31	The anti-inflammatory compound curcumin inhibits Neisseria gonorrhoeae-induced NF-κB signaling, release of pro-inflammatory cytokines/chemokines and attenuates adhesion in late infection. Biological Chemistry, 2005, 386, 481-490.	1.2	47
32	Nanoparticle binding attenuates the pathobiology of gastric cancer-associated <i>Helicobacter pylori</i> . Nanoscale, 2018, 10, 1453-1463.	2.8	45
33	Nanomaterial–microbe cross-talk: physicochemical principles and (patho)biological consequences. Chemical Society Reviews, 2018, 47, 5312-5337.	18.7	44
34	Bâ€Raf/Rap1 signaling, but not câ€Rafâ€1/Ras, induces the histidine decarboxylase promoter in Helicobacter pylori infection. FASEB Journal, 2002, 16, 417-419.	0.2	41
35	Targeting focal adhesions:Helicobacter pylori-host communication in cell migration. Cell Communication and Signaling, 2008, 6, 2.	2.7	39
36	Hybrid Network Model for "Deep Learning―of Chemical Data: Application to Antimicrobial Peptides. Molecular Informatics, 2017, 36, 1600011.	1.4	39

#	Article	IF	CITATIONS
37	Bacterial serine protease HtrA as a promising new target for antimicrobial therapy?. Cell Communication and Signaling, 2017, 15, 4.	2.7	39
38	ldentification of estrogen receptor ligands leading to activation of non-genomic signaling pathways while exhibiting only weak transcriptional activity. Journal of Steroid Biochemistry and Molecular Biology, 2006, 98, 25-35.	1.2	37
39	Fragmentâ€Based Deâ€Novo Design Reveals a Smallâ€Molecule Inhibitor of <i>Helicobacter Pylori</i> HtrA. Angewandte Chemie - International Edition, 2015, 54, 10244-10248.	7.2	37
40	Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study. Npj Science of Food, 2018, 2, 22.	2.5	37
41	Helicobacter pylori-Derived Outer Membrane Vesicles (OMVs): Role in Bacterial Pathogenesis?. Microorganisms, 2020, 8, 1328.	1.6	36
42	HtrA-mediated E-cadherin cleavage is limited to DegP and DegQ homologs expressed by gram-negative pathogens. Cell Communication and Signaling, 2016, 14, 30.	2.7	35
43	Analysis of the type IV secretion system-dependent cell motility of Helicobacter pylori-infected epithelial cells. Biochemical and Biophysical Research Communications, 2004, 322, 860-866.	1.0	34
44	Complex Cellular Responses of Helicobacter pylori-Colonized Gastric Adenocarcinoma Cells. Infection and Immunity, 2011, 79, 2362-2371.	1.0	34
45	Extracellular secretion of protease HtrA from <i>Campylobacter jejuni</i> is highly efficient and independent of its protease activity and flagellum. European Journal of Microbiology and Immunology, 2013, 3, 163-173.	1.5	32
46	Exploiting the Gastric Epithelial Barrier: Helicobacter pylori's Attack on Tight and Adherens Junctions. Current Topics in Microbiology and Immunology, 2017, 400, 195-226.	0.7	32
47	CagA Phosphorylation in Helicobacter pylori-Infected B Cells Is Mediated by the Nonreceptor Tyrosine Kinases of the Src and Abl Families. Infection and Immunity, 2016, 84, 2671-2680.	1.0	30
48	Inhibiting Helicobacter pylori HtrA protease by addressing a computationally predicted allosteric ligand binding site. Chemical Science, 2014, 5, 3583.	3.7	29
49	Calcium binding protects E-cadherin from cleavage by Helicobacter pylori HtrA. Gut Pathogens, 2016, 8, 29.	1.6	29
50	The stability and activity of recombinant <i>Helicobacter pylori</i> Htr <scp>A</scp> under stress conditions. Journal of Basic Microbiology, 2013, 53, 402-409.	1.8	28
51	Proteolysis in Helicobacter pylori-Induced Gastric Cancer. Toxins, 2017, 9, 134.	1.5	27
52	TLR2, TLR4 and TLR10 Shape the Cytokine and Chemokine Release of H. pylori-Infected Human DCs. International Journal of Molecular Sciences, 2020, 21, 3897.	1.8	25
53	Rational Design of Membraneâ€Poreâ€Forming Peptides. Small, 2017, 13, 1701316.	5.2	24
54	Activity and Functional Importance of Helicobacter pylori Virulence Factors. Advances in Experimental Medicine and Biology, 2019, 1149, 35-56.	0.8	23

#	Article	IF	CITATIONS
55	Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells. Cell Communication and Signaling, 2011, 9, 27.	2.7	22
56	Abl Family of Tyrosine Kinases and Microbial Pathogenesis. International Review of Cell and Molecular Biology, 2011, 286, 271-300.	1.6	22
57	<i>Helicobacter pylori</i> activates protein kinase C delta to control Raf in MAP kinase signalling: Role in AGS epithelial cell scattering and elongation. Cytoskeleton, 2009, 66, 874-892.	4.4	20
58	Oxidative Phosphorylation System in Gastric Carcinomas and Gastritis. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	1.9	20
59	Carnobacterium divergens - a dominating bacterium of pork meat juice. FEMS Microbiology Letters, 2012, 332, 122-130.	0.7	19
60	A novel FRET peptide assay reveals efficient Helicobacter pylori HtrA inhibition through zinc and copper binding. Scientific Reports, 2020, 10, 10563.	1.6	19
61	Multi-Approach Analysis for the Identification of Proteases within Birch Pollen. International Journal of Molecular Sciences, 2017, 18, 1433.	1.8	18
62	Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579. PLoS ONE, 2016, 11, e0162433.	1.1	17
63	Helicobacter pylori-controlled c-Abl localization promotes cell migration and limits apoptosis. Cell Communication and Signaling, 2019, 17, 10.	2.7	17
64	Sparse Neural Network Models of Antimicrobial Peptideâ€Activity Relationships. Molecular Informatics, 2016, 35, 606-614.	1.4	15
65	Autoregulation of human relaxin-2 gene expression critically involves relaxin and glucocorticoid receptor binding to glucocorticoid response half-sites in the relaxin-2 promoter. Regulatory Peptides, 2009, 155, 163-173.	1.9	14
66	H. pylori modulates DC functions via T4SS/TNFα/p38-dependent SOCS3 expression. Cell Communication and Signaling, 2020, 18, 160.	2.7	14
67	Tyrosine Kinases in Helicobacter pylori Infections and Gastric Cancer. Toxins, 2019, 11, 591.	1.5	13
68	Differential phosphoproteome profiling reveals a functional role for VASP inHelicobacter pylori-induced cytoskeleton turnover in gastric epithelial cells. Cellular Microbiology, 2008, 10, 2285-2296.	1.1	12
69	From Virtual Screening to Bioactive Compounds by Visualizing and Clustering of Chemical Space. Molecular Informatics, 2012, 31, 21-26.	1.4	12
70	Peptide–Membrane Interaction between Targeting and Lysis. ACS Chemical Biology, 2017, 12, 2254-2259.	1.6	12
71	A novel basolateral type IV secretion model for the CagA oncoprotein of Helicobacter pylori. Microbial Cell, 2018, 5, 60-62.	1.4	12
72	Peptidase PepP is a novel virulence factor of <i>Campylobacter jejuni</i> contributing to murine campylobacteriosis. Gut Microbes, 2020, 12, 1770017.	4.3	9

#	Article	IF	CITATIONS
73	Identification of Desmoglein-2 as a novel target of Helicobacter pylori HtrA in epithelial cells. Cell Communication and Signaling, 2021, 19, 108.	2.7	9
74	Piloting the Membranolytic Activities of Peptides with a Selfâ€organizing Map. ChemBioChem, 2014, 15, 2225-2231.	1.3	8
75	The sound of tumor cell-microenvironment communication – composed by the Cancer Cluster Salzburg research network. Cell Communication and Signaling, 2017, 15, 20.	2.7	8
76	The proteolytic activity of Listeria monocytogenes HtrA. BMC Microbiology, 2019, 19, 255.	1.3	8
77	Quantitative phosphoproteomic analysis of prion-infected neuronal cells. Cell Communication and Signaling, 2010, 8, 28.	2.7	7
78	Peroxiredoxin 6 promotes upregulation of the prion protein (PrP) in neuronal cells of prion-infected mice. Cell Communication and Signaling, 2012, 10, 38.	2.7	7
79	Differential gene expression in ERα-positive and ERα-negative breast cancer cells upon leptin stimulation. Endocrine, 2013, 44, 496-503.	1.1	7
80	Proteolytic Activities Expressed by Gastrointestinal Pathogens Bacillus cereus, Listeria monocytogenes and Enterococcus faecium in Different Growth Phases. British Microbiology Research Journal, 2015, 7, 62-70.	0.2	7
81	Special Issue "H. pylori Virulence Factors in the Induction of Gastric Cancer― Toxins, 2018, 10, 176.	1.5	6
82	Dissecting the Helicobacter pylori-regulated transcriptome of B cells. Pathogens and Disease, 2020, 78, .	0.8	6
83	Proteolytic Landscapes in Gastric Pathology and Cancerogenesis. International Journal of Molecular Sciences, 2022, 23, 2419.	1.8	5
84	Morphing of Amphipathic Helices to Explore the Activity and Selectivity of Membranolytic Antimicrobial Peptides. Biochemistry, 2020, 59, 3772-3781.	1.2	4
85	Inhibition of Collagenase Q1 of <i>Bacillus cereus</i> as a Novel Antivirulence Strategy for the Treatment of Skinâ€Wound Infections. Advanced Therapeutics, 2022, 5, 2100222.	1.6	4
86	OUP accepted manuscript. FEMS Microbiology Letters, 2021, 368, .	0.7	3
87	Emerging Novel Virulence Factors of Helicobacter pylori. , 2016, , 165-188.		2
88	Many ways of communication: from Helicobacter pylori adherence to death, disruption, migration and escape. Cell Communication and Signaling, 2011, 9, 24.	2.7	1
89	Helicobacter pylori CagA EPIYA Motif Variations Affect Metabolic Activity in B Cells. Toxins, 2021, 13, 592.	1.5	1
90	E-Cadherin Orthologues as Substrates for the Serine Protease High Temperature Requirement A (HtrA). Biomolecules, 2022, 12, 356.	1.8	1

#	Article	IF	CITATIONS
91	Peptide lineup against Gram-negative bacterial infection – first-in-class peptide inhibitor of H. pylori HtrA. Journal of Cheminformatics, 2014, 6, .	2.8	0