
## Joshua L Santarpia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9625257/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care.<br>Scientific Reports, 2020, 10, 12732.                                                                               | 3.3 | 448       |
| 2  | The size and culturability of patient-generated SARS-CoV-2 aerosol. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 706-711.                                                               | 3.9 | 87        |
| 3  | Direct measurement of the hydration state of ambient aerosol populations. Journal of Geophysical<br>Research, 2004, 109, .                                                                                       | 3.3 | 45        |
| 4  | Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria. Optics Express, 2013, 21, 22285.                                                              | 3.4 | 44        |
| 5  | Assessment of a Program for SARS-CoV-2 Screening and Environmental Monitoring in an Urban Public<br>School District. JAMA Network Open, 2021, 4, e2126447.                                                       | 5.9 | 44        |
| 6  | Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis. Applied Physics Letters, 2014, 104, .                                | 3.3 | 36        |
| 7  | Size-dependent fluorescence of bioaerosols: Mathematical model using fluorescing and absorbing molecules in bacteria. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 157, 54-70.             | 2.3 | 31        |
| 8  | Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging. Optics Express, 2012, 20, 29867.                                                 | 3.4 | 30        |
| 9  | Organics in the Northeastern Pacific and their impacts on aerosol hygroscopicity in the subsaturated and supersaturated regimes. Atmospheric Chemistry and Physics, 2006, 6, 4101-4115.                          | 4.9 | 29        |
| 10 | Detection and characterization of chemical aerosol using laser-trapping single-particle Raman spectroscopy. Applied Optics, 2017, 56, 6577.                                                                      | 1.8 | 28        |
| 11 | Effects of ozone and relative humidity on fluorescence spectra of octapeptide bioaerosol particles.<br>Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 133, 538-550.                          | 2.3 | 26        |
| 12 | Spectrally-resolved fluorescence cross sections of aerosolized biological live agents and simulants using five excitation wavelengths in a BSL-3 laboratory. Optics Express, 2014, 22, 8165.                     | 3.4 | 25        |
| 13 | Review of Literature for Air Medical Evacuation High-Level Containment Transport. Air Medical<br>Journal, 2019, 38, 359-365.                                                                                     | 0.6 | 24        |
| 14 | Ultra-absorptive Nanofiber Swabs for Improved Collection and Test Sensitivity of SARS-CoV-2 and other Biological Specimens. Nano Letters, 2021, 21, 1508-1516.                                                   | 9.1 | 24        |
| 15 | Elastic back-scattering patterns via particle surface roughness and orientation from single trapped airborne aerosol particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187, 224-231. | 2.3 | 23        |
| 16 | Atmospheric aging processes of bioaerosols under laboratory-controlled conditions: A review.<br>Journal of Aerosol Science, 2021, 155, 105767.                                                                   | 3.8 | 21        |
| 17 | Relationship Between Biologically Fluorescent Aerosol and Local Meteorological Conditions.<br>Aerosol Science and Technology, 2013, 47, 655-661.                                                                 | 3.1 | 17        |
| 18 | Raman scattering and red fluorescence in the photochemical transformation of dry tryptophan particles. Optics Express, 2016, 24, 11654.                                                                          | 3.4 | 17        |

JOSHUA L SANTARPIA

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Laboratory study of bioaerosols: Traditional test systems, modern approaches, and environmental control. Aerosol Science and Technology, 2020, 54, 585-600.                                                                                            | 3.1 | 16        |
| 20 | Diurnal variations in the hygroscopic growth cycles of ambient aerosol populations. Journal of<br>Geophysical Research, 2005, 110, .                                                                                                                   | 3.3 | 15        |
| 21 | Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 153, 13-28. | 2.3 | 15        |
| 22 | Measurement of back-scattering patterns from single laser trapped aerosol particles in air. Applied Optics, 2017, 56, B1.                                                                                                                              | 2.1 | 15        |
| 23 | Liquid–liquid phase separation and evaporation of a laser-trapped organic–organic airborne droplet<br>using temporal spatial-resolved Raman spectroscopy. Physical Chemistry Chemical Physics, 2018, 20,<br>19151-19159.                               | 2.8 | 15        |
| 24 | Optical-trapping of particles in air using parabolic reflectors and a hollow laser beam. Optics Express, 2019, 27, 33061.                                                                                                                              | 3.4 | 14        |
| 25 | Review of elastic light scattering from single aerosol particles and application in bioaerosol detection. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 279, 108067.                                                              | 2.3 | 14        |
| 26 | Improved Method for the Evaluation of Real-Time Biological Aerosol Detection Technologies. Aerosol<br>Science and Technology, 2011, 45, 635-644.                                                                                                       | 3.1 | 13        |
| 27 | Position-resolved Raman spectra from a laser-trapped single airborne chemical droplet. Optics Letters, 2017, 42, 5113.                                                                                                                                 | 3.3 | 13        |
| 28 | Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria: errata. Optics Express, 2014, 22, 22817.                                                                                            | 3.4 | 11        |
| 29 | Need for Aeromedical Evacuation High-Level Containment Transport Guidelines. Emerging Infectious<br>Diseases, 2019, 25, 1033-1034.                                                                                                                     | 4.3 | 11        |
| 30 | Changes of fluorescence spectra and viability from aging aerosolized <i>E. coli</i> cells under various laboratory-controlled conditions in an advanced rotating drum. Aerosol Science and Technology, 2019, 53, 1261-1276.                            | 3.1 | 10        |
| 31 | CRISPR/Cas9 as an antiviral against Orthopoxviruses using an AAV vector. Scientific Reports, 2020, 10, 19307.                                                                                                                                          | 3.3 | 10        |
| 32 | Aerosol tracer testing in Boeing 767 and 777 aircraft to simulate exposure potential of infectious aerosol such as SARS-CoV-2. PLoS ONE, 2021, 16, e0246916.                                                                                           | 2.5 | 10        |
| 33 | Study of single airborne particle using laser-trapped submicron position-resolved temporal Raman spectroscopy. Chemical Physics Letters, 2018, 706, 255-260.                                                                                           | 2.6 | 8         |
| 34 | Opto-aerodynamic focusing of aerosol particles. Aerosol Science and Technology, 2018, 52, 13-18.                                                                                                                                                       | 3.1 | 7         |
| 35 | Longitudinal Metagenomic Analysis of the Water and Soil from Gulf of Mexico Beaches Affected by<br>the Deep Water Horizon Oil Spill. Nature Precedings, 2011, , .                                                                                      | 0.1 | 5         |
| 36 | Implementation of a COVID-19 cohort area resulted in no surface or air contamination in surrounding<br>areas in one academic emergency department. American Journal of Emergency Medicine, 2021, 47,<br>253-257.                                       | 1.6 | 5         |

JOSHUA L SANTARPIA

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Measurement of circular intensity differential scattering (CIDS) from single airborne aerosol particles for bioaerosol detection and identification. Optics Express, 2022, 30, 1442.                        | 3.4 | 5         |
| 38 | Nanofiber capsules for minimally invasive sampling of biological specimens from gastrointestinal tract. Acta Biomaterialia, 2022, 146, 211-221.                                                             | 8.3 | 5         |
| 39 | Airborne Release Fractions from Surrogate Nuclear Waste Fires Containing Lanthanide Nitrates and<br>Depleted Uranium Nitrate in 30% Tributyl Phosphate in Kerosene. Nuclear Technology, 2021, 207, 103-118. | 1.2 | 4         |
| 40 | Fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric processing. Proceedings of SPIE, 2011, , .                                                    | 0.8 | 3         |
| 41 | Infectious Aerosol Capture Mask as Environmental Control to Reduce Spread of Respiratory Viral Particles. Viruses, 2022, 14, 1275.                                                                          | 3.3 | 2         |
| 42 | Test methodology development for biological agent detection systems. , 2006, 6378, 637802.                                                                                                                  |     | 1         |
| 43 | Captive Aerosol Growth and Evolution (CAGE) chamber system to investigate particle growth due to secondary aerosol formation. Atmospheric Measurement Techniques, 2021, 14, 3351-3370.                      | 3.1 | 1         |
| 44 | Emerging Science, Personal Protective Equipment Guidance, and Resource Scarcity: Inaction and Inequity for Workers in Essential Industries. Health Security, 2021, 19, 564-569.                             | 1.8 | 1         |
| 45 | DETECTION AND CHARACTERIZATION OF CHEMICAL AND BIOLOGICAL AEROSOLS USING LASER-TRAPPING SINGLE-PARTICLE RAMAN SPECTROSCOPY. WIT Transactions on Ecology and the Environment, 2018, , .                      | 0.0 | 1         |
| 46 | CHAPTER 6. Bioaerosols in the Environment: Populations, Measurement and Processes. Issues in Toxicology, 0, , 219-247.                                                                                      | 0.1 | 1         |
| 47 | Characteristics of phylogenetic diversity in airborne bacterial populations in China. , 2011, , .                                                                                                           |     | 0         |
| 48 | Estimates of aqueous-phase sulfate production from tandem differential mobility analysis.<br>Atmospheric Environment, 2011, 45, 5484-5492.                                                                  | 4.1 | 0         |
| 49 | Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling. , 2013, , .                                                                                             |     | 0         |
| 50 | Determination of Airborne Release Fractions from Solid Surrogate Nuclear Waste Fires. Nuclear<br>Technology, 0, , 1-17.                                                                                     | 1.2 | 0         |