Ambika G Bajpayee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9623885/publications.pdf

Version: 2024-02-01

567144 677027 1,073 23 15 22 citations g-index h-index papers 23 23 23 907 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cartilage-targeting drug delivery: can electrostatic interactions help?. Nature Reviews Rheumatology, 2017, 13, 183-193.	3.5	180
2	Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis. Biomaterials, 2014, 35, 538-549.	5.7	160
3	Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins. Nano Today, 2020, 34, 100898.	6.2	99
4	Electrostatic interactions enable rapid penetration, enhanced uptake and retention of intraâ€articular injected avidin in rat knee joints. Journal of Orthopaedic Research, 2014, 32, 1044-1051.	1.2	98
5	Cartilage penetrating cationic peptide carriers for applications in drug delivery to avascular negatively charged tissues. Acta Biomaterialia, 2019, 93, 258-269.	4.1	70
6	Milk exosomes with enhanced mucus penetrability for oral delivery of siRNA. Biomaterials Science, 2021, 9, 4260-4277.	2.6	68
7	A rabbit model demonstrates the influence of cartilage thickness on intraâ€articular drug delivery and retention within cartilage. Journal of Orthopaedic Research, 2015, 33, 660-667.	1.2	63
8	Multi-arm Avidin nano-construct for intra-cartilage delivery of small molecule drugs. Journal of Controlled Release, 2020, 318, 109-123.	4.8	52
9	Interleukin-1 receptor antagonist (IL-1Ra) is more effective in suppressing cytokine-induced catabolism in cartilage-synovium co-culture than in cartilage monoculture. Arthritis Research and Therapy, 2019, 21, 238.	1.6	50
10	Recent advances in targeted drug delivery for treatment of osteoarthritis. Current Opinion in Rheumatology, 2021, 33, 94-109.	2.0	46
11	Hyaluronic Acid-Based Shape-Memory Cryogel Scaffolds for Focal Cartilage Defect Repair. Tissue Engineering - Part A, 2021, 27, 748-760.	1.6	39
12	Bioelectricity for Drug Delivery: The Promise of Cationic Therapeutics. Bioelectricity, 2020, 2, 68-81.	0.6	35
13	Multi-scale imaging techniques to investigate solute transport across articular cartilage. Journal of Biomechanics, 2018, 78, 10-20.	0.9	23
14	Resveratrol and Curcumin Attenuate <i>Ex Vivo</i> Sugar-Induced Cartilage Glycation, Stiffening, Senescence, and Degeneration. Cartilage, 2021, 13, 1214S-1228S.	1.4	18
15	Avidin-biotin technology to synthesize multi-arm nano-construct for drug delivery. MethodsX, 2020, 7, 100882.	0.7	17
16	Avidin grafted dextran nanostructure enables a month-long intra-discal retention. Scientific Reports, 2020, 10, 12017.	1.6	14
17	Single-Dose Intra-Cartilage Delivery of Kartogenin Using a Cationic Multi-Arm Avidin Nanocarrier Suppresses Cytokine-Induced Osteoarthritis-Related Catabolism. Cartilage, 2022, 13, 194760352210930.	1.4	13
18	Characterization of Intra-Cartilage Transport Properties of Cationic Peptide Carriers. Journal of Visualized Experiments, 2020, , .	0.2	9

#	Article	IF	CITATIONS
19	Effects of polycationic drug carriers on the electromechanical and swelling properties of cartilage. Biophysical Journal, 2022, 121, 3542-3561.	0.2	9
20	Modeling Electrostatic Charge Shielding Induced by Cationic Drug Carriers in Articular Cartilage Using Donnan Osmotic Theory. Bioelectricity, 2022, 4, 248-258.	0.6	8
21	Cationic Contrast Agents for Computed Tomography of Cartilage for Early Diagnosis of Osteoarthritis. Methods in Molecular Biology, 2022, 2393, 797-812.	0.4	1
22	Charge-Based Multiarm Avidin Nanoconstruct as a Platform Technology for Applications in Drug Delivery. Methods in Molecular Biology, 2022, 2394, 537-553.	0.4	1
23	Electrically Charged Biomaterials for Drug Delivery and Tissue Repair. Bioelectricity, 2020, 2, 67-67.	0.6	0