Mattia Quattrocelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/962330/publications.pdf

Version: 2024-02-01

54 papers 1,406 citations

331670 21 h-index 35 g-index

55 all docs 55 does citations

55 times ranked 2182 citing authors

#	Article	IF	CITATIONS
1	Intermittent glucocorticoid treatment enhances skeletal muscle performance through sexually dimorphic mechanisms. Journal of Clinical Investigation, 2022, 132, .	8.2	16
2	KLF15 cistromes reveal a hepatocyte pathway governing plasma corticosteroid transport and systemic inflammation. Science Advances, 2022, 8, eabj2917.	10.3	5
3	Intermittent prednisone treatment in mice promotes exercise tolerance in obesity through adiponectin. Journal of Experimental Medicine, 2022, 219, .	8.5	7
4	Muscle mitochondrial remodeling by intermittent glucocorticoid drugs requires an intact circadian clock and muscle PGC1 \hat{i} ±. Science Advances, 2022, 8, eabm 1189 .	10.3	16
5	Commentary for "antagonizing urotensin receptor is a novel therapeutic strategy for glucocorticoidâ€induced skeletal muscle atrophyâ€i Clinical and Translational Discovery, 2022, 2, .	0.5	0
6	Impact of circadian time of dosing on cardiomyocyte-autonomous effects of glucocorticoids. Molecular Metabolism, 2022, 62, 101528.	6.5	3
7	Mechanisms and Clinical Applications of Glucocorticoid Steroids in Muscular Dystrophy. Journal of Neuromuscular Diseases, 2021, 8, 39-52.	2.6	35
8	Isolation of Mammalian Mesoangioblasts: A Subset of Pericytes with Myogenic Potential. Methods in Molecular Biology, 2021, 2235, 155-167.	0.9	3
9	Guide Cells Support Muscle Regeneration and Affect Neuro-Muscular Junction Organization. International Journal of Molecular Sciences, 2021, 22, 1939.	4.1	13
10	1187-P: Time to Take Your Steroids: Circadian Regulation of Glucocorticoid Effects on Muscle Metabolism. Diabetes, 2021, 70, 1187-P.	0.6	0
11	Anti-latent $TGF\hat{l}^2$ binding protein 4 antibody improves muscle function and reduces muscle fibrosis in muscular dystrophy. Science Translational Medicine, 2021, 13, eabf0376.	12.4	20
12	Abstract P397: <i>MTCH2</i> As A Modifier Of Cardiomyopathy. Circulation Research, 2021, 129, .	4.5	0
13	Abstract 102: Time-of-intake Regulates Glucocorticoid Pharmacology Of Cardiac Bioenergetics. Circulation Research, 2021, 129, .	4.5	0
14	Abstract 261: Evaluating MTCH2 as a Modifier of Cardiomyopathy. Circulation Research, 2020, 127, .	4.5	0
15	Spp1 (osteopontin) promotes $TGF\hat{l}^2$ processing in fibroblasts of dystrophin-deficient muscles through matrix metalloproteinases. Human Molecular Genetics, 2019, 28, 3431-3442.	2.9	47
16	A gene-edited mouse model of Limb-Girdle muscular dystrophy 2C for testing exon skipping. DMM Disease Models and Mechanisms, 2019, 13, .	2.4	18
17	Moderate exercise improves function and increases adiponectin in the mdx mouse model of muscular dystrophy. Scientific Reports, 2019, 9, 5770.	3.3	26
18	Healthy, mtDNA-mutationÂfree mesoangioblasts from mtDNA patients qualify for autologous therapy. Stem Cell Research and Therapy, 2019, 10, 405.	5 . 5	8

#	Article	IF	Citations
19	Pulsed glucocorticoids enhance dystrophic muscle performance through epigenetic-metabolic reprogramming. JCI Insight, 2019, 4, .	5.0	32
20	Recombinant annexin A6 promotes membrane repair and protects against muscle injury. Journal of Clinical Investigation, 2019, 129, 4657-4670.	8.2	55
21	Dusp6 is a genetic modifier of growth through enhanced ERK activity. Human Molecular Genetics, 2018, 28, 279-289.	2.9	6
22	Outside in: The matrix as a modifier of muscular dystrophy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 572-579.	4.1	22
23	Intermittent Glucocorticoid Dosing Improves Muscle Repair and Function in Mice with Limb-Girdle Muscular Dystrophy. American Journal of Pathology, 2017, 187, 2520-2535.	3.8	34
24	MicroRNAs promote skeletal muscle differentiation of mesodermal iPSC-derived progenitors. Nature Communications, 2017, 8, 1249.	12.8	24
25	Intermittent glucocorticoid steroid dosing enhances muscle repair without eliciting muscle atrophy. Journal of Clinical Investigation, 2017, 127, 2418-2432.	8.2	96
26	Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury. PLoS Genetics, 2017, 13, e1007070.	3.5	27
27	BMP and WNT: the road to cardiomyocytes is paved with precise modulation. Stem Cell Investigation, 2016, 3, 21-21.	3.0	1
28	Increased Understanding of Stem Cell Behavior in Neurodegenerative and Neuromuscular Disorders by Use of Noninvasive Cell Imaging. Stem Cells International, 2016, 2016, 1-20.	2.5	13
29	Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells. Stem Cells International, 2016, 2016, 1-13.	2.5	10
30	An actin-dependent annexin complex mediates plasma membrane repair in muscle. Journal of Cell Biology, 2016, 213, 705-718.	5.2	149
31	Myomir dysregulation and reactive oxygen species in aged human satellite cells. Biochemical and Biophysical Research Communications, 2016, 473, 462-470.	2.1	40
32	Equine-Induced Pluripotent Stem Cells Retain Lineage Commitment Toward Myogenic and Chondrogenic Fates. Stem Cell Reports, 2016, 6, 55-63.	4.8	25
33	Smad1/5/8 are myogenic regulators of murine and human mesoangioblasts. Journal of Molecular Cell Biology, 2016, 8, 73-87.	3.3	19
34	An actin-dependent annexin complex mediates plasma membrane repair in muscle. Journal of Experimental Medicine, 2016, 213, 21370IA58.	8.5	1
35	Unconventional Players on the Striated Muscle Field: microRNAs, Signaling Pathways and Epigenetic Regulators. Current Stem Cell Research and Therapy, 2016, 11, 554-560.	1.3	1
36	Sodium Iodide Symporter PET and BLI Noninvasively Reveal Mesoangioblast Survival in Dystrophic Mice. Stem Cell Reports, 2015, 5, 1183-1195.	4.8	17

#	Article	IF	CITATIONS
37	The mesmiRizing complexity of microRNAs for striated muscle tissue engineering. Advanced Drug Delivery Reviews, 2015, 88, 37-52.	13.7	22
38	547: Amniotic fluid stem cells accelerate muscle regeneration. American Journal of Obstetrics and Gynecology, 2015, 212, S273.	1.3	0
39	Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle. Journal of Clinical Investigation, 2015, 125, 4463-4482.	8.2	56
40	Myogenic Potential of Canine Craniofacial Satellite Cells. Frontiers in Aging Neuroscience, 2014, 6, 90.	3.4	21
41	Notch signaling regulates myogenic regenerative capacity of murine and human mesoangioblasts. Cell Death and Disease, 2014, 5, e1448-e1448.	6.3	32
42	Fate choice of post-natal mesoderm progenitors: skeletal versus cardiac muscle plasticity. Cellular and Molecular Life Sciences, 2014, 71, 615-627.	5.4	8
43	Longâ€Term <i>miRâ€669a</i> Therapy Alleviates Chronic Dilated Cardiomyopathy in Dystrophic Mice. Journal of the American Heart Association, 2013, 2, e000284.	3.7	56
44	Pluripotent Stem Cell Derivation and Differentiation Toward Cardiac Muscle: Novel Techniques and Advances in Patent Literature. Recent Patents on Drug Delivery and Formulation, 2013, 7, 18-28.	2.1	5
45	Mouse and Human Mesoangioblasts: Isolation and Characterization from Adult Skeletal Muscles. Methods in Molecular Biology, 2012, 798, 65-76.	0.9	43
46	Tuning Multi/Pluri-Potent Stem Cell Fate by Electrospun Poly(<scp>l</scp> -lactic) Tj ETQq0 0 0 rgBT /Overlock 1	0 Tf 50 38	2 Td (acid)-C
47	Multiplexing and demultiplexing logic functions for computing signal processing tasks in synthetic biology. Biotechnology Journal, 2011, 6, 784-795.	3.5	28
48	Intrinsic cell memory reinforces myogenic commitment of pericyteâ€derived iPSCs. Journal of Pathology, 2011, 223, 593-603.	4.5	71
49	Synthetic sulfonyl-hydrazone-1 positively regulates cardiomyogenic microRNA expression and cardiomyocyte differentiation of induced pluripotent stem cells. Journal of Cellular Biochemistry, 2011, 112, 2006-2014.	2.6	20
50	Alpha sarcoglycan is required for FGF-dependent myogenic progenitor cell proliferation in vitro and in vivo. Development (Cambridge), 2011, 138, 4523-4533.	2.5	25
51	Development of a New Tool for 3D Modeling for Regenerative Medicine. International Journal of Biomedical Imaging, 2011, 2011, 1-13.	3.9	3
52	Novel Hyperactive Transposons for Genetic Modification of Induced Pluripotent and Adult Stem Cells: A Nonviral Paradigm for Coaxed Differentiation. Stem Cells, 2010, 28, 1760-1771.	3.2	42
53	Cell therapy strategies and improvements for muscular dystrophy. Cell Death and Differentiation, 2010, 17, 1222-1229.	11.2	45
54	Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass. Journal of Muscle Research and Cell Motility, 2009, 30, 243-253.	2.0	52