Kevin Mccluskey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/962271/publications.pdf

Version: 2024-02-01

25 papers 806 citations

759233 12 h-index 24 g-index

26 all docs

26 docs citations

times ranked

26

1120 citing authors

#	Article	IF	Citations
1	Enabling a Community to Dissect an Organism: Overview of the Neurospora Functional Genomics Project. Advances in Genetics, 2007, 57, 49-96.	1.8	191
2	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	3.9	175
3	Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2011, 1, 303-316.	1.8	68
4	<i>Neurospora crassa</i> : Looking back and looking forward at a model microbe. American Journal of Botany, 2014, 101, 2022-2035.	1.7	68
5	World data centre for microorganisms: an information infrastructure to explore and utilize preserved microbial strains worldwide. Nucleic Acids Research, 2017, 45, D611-D618.	14.5	46
6	Investment into the future of microbial resources: culture collection funding models and BRC business plans for biological resource centres. SpringerPlus, 2014, 3, 81.	1.2	38
7	The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections. Applied and Environmental Microbiology, 2015, 81, 5671-5674.	3.1	33
8	The U.S. Culture Collection Network Responding to the Requirements of the Nagoya Protocol on Access and Benefit Sharing. MBio, 2017, 8, .	4.1	30
9	Fungal biological resources to support international development: challenges and opportunities. World Journal of Microbiology and Biotechnology, 2019, 35, 139.	3.6	28
10	A Review of Living Collections with Special Emphasis on Sustainability and Its Impact on Research Across Multiple Disciplines. Biopreservation and Biobanking, 2017, 15, 20-30.	1.0	25
11	Draft Genome Sequence of Neurospora crassa Strain FGSC 73. Genome Announcements, 2015, 3, .	0.8	17
12	Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era. Mycology, 2017, 8, 67-83.	4.4	13
13	The F-box protein gene $\langle i \rangle exo \langle i \rangle - \langle i \rangle 1 \langle i \rangle$ is a target for reverse engineering enzyme hypersecretion in filamentous fungi. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
14	Preserving US microbe collections sparks future discoveries. Journal of Applied Microbiology, 2020, 129, 162-174.	3.1	9
15	Evidence for dominant suppression of repeat-induced point mutation (RIP) in crosses with the wild-isolatedNeurospora crassa strains Sugartown and Adiopodoume-7. Journal of Genetics, 2001, 80, 55-61.	0.7	8
16	Variation in mitochondrial genome primary sequence among whole-genome-sequenced strains of Neurospora crassa. IMA Fungus, 2012, 3, 93-98.	3.8	8
17	The U.S. Culture Collection Network Lays the Foundation for Progress in Preservation of Valuable Microbial Resources. Phytopathology, 2016, 106, 532-540.	2.2	8
18	Best practices for fungal germplasm repositories and perspectives on their implementation. Applied Microbiology and Biotechnology, 2012, 93, 975-982.	3.6	7

#	Article	IF	CITATIONS
19	The challenges faced by living stock collections in the USA. ELife, 2017, 6, .	6.0	7
20	Public germplasm collections and revolutions in biotechnology. Journal of Biosciences, 2011, 36, 205-209.	1.1	6
21	The Fungal Cell Death Regulator czt-1 Is Allelic to acr-3. Journal of Fungi (Basel, Switzerland), 2019, 5, 114.	3.5	3
22	An evaluation of the status of living collections for plant, environmental, and microbial research. Journal of Biosciences, 2017, 42, 321-331.	1.1	2
23	Frozen fungi: cryogenic storage is an effective method to store ⟨i⟩Fusarium⟨/i⟩ cultures for the longâ€ŧerm. Annals of Applied Biology, 2018, 173, 133-140.	2.5	2
24	Beyond Jurassic Park: Real Science with Ancient DNA. Plant Health Progress, 2000, 1, 14.	1.4	1
25	Phenotype to genotype in Neurospora crassa: Association of the scumbo phenotype with mutations in the gene encoding ceramide C9-methyltransferase. Current Research in Microbial Sciences, 2022, 3, 100117.	2.3	0