
Jay R Gibson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9621679/publications.pdf Version: 2024-02-01

LAV P CIBSON

#	Article	IF	CITATIONS
1	A sound-driven cortical phase-locking change in the Fmr1 KO mouse requires Fmr1 deletion in a subpopulation of brainstem neurons. Neurobiology of Disease, 2022, 170, 105767.	4.4	4
2	GABAA Alpha 2,3 Modulation Improves Select Phenotypes in a Mouse Model of Fragile X Syndrome. Frontiers in Psychiatry, 2021, 12, 678090.	2.6	6
3	FOXP1 negatively regulates intrinsic excitability in D2 striatal projection neurons by promoting inwardly rectifying and leak potassium currents. Molecular Psychiatry, 2021, 26, 1761-1774.	7.9	9
4	Experience-dependent weakening of callosal synaptic connections in the absence of postsynaptic FMRP. ELife, 2021, 10, .	6.0	5
5	Local cortical circuit correlates of altered EEG in the mouse model of Fragile X syndrome. Neurobiology of Disease, 2019, 124, 563-572.	4.4	39
6	Audiogenic Seizures in the <i>Fmr1</i> Knock-Out Mouse Are Induced by <i>Fmr1</i> Deletion in Subcortical, VGlut2-Expressing Excitatory Neurons and Require Deletion in the Inferior Colliculus. Journal of Neuroscience, 2019, 39, 9852-9863.	3.6	38
7	Experience-Dependent and Differential Regulation of Local and Long-Range Excitatory Neocortical Circuits by Postsynaptic Mef2c. Neuron, 2017, 93, 48-56.	8.1	32
8	Autonomous and non-autonomous roles for ephrin-B in interneuron migration. Developmental Biology, 2017, 431, 179-193.	2.0	11
9	Distinct stages of synapse elimination are induced by burst firing of CA1 neurons and differentially require MEF2A/D. ELife, 2017, 6, .	6.0	16
10	APP Causes Hyperexcitability in Fragile X Mice. Frontiers in Molecular Neuroscience, 2016, 9, 147.	2.9	24
11	Increased Cortical Inhibition in Autism-Linked Neuroligin-3R451C Mice Is Due in Part to Loss of Endocannabinoid Signaling. PLoS ONE, 2015, 10, e0140638.	2.5	38
12	Increased Expression of the PI3K Enhancer PIKE Mediates Deficits in Synaptic Plasticity and Behavior in Fragile X Syndrome. Cell Reports, 2015, 11, 727-736.	6.4	97
13	Postsynaptic mGluR5 promotes evoked AMPAR-mediated synaptic transmission onto neocortical layer 2/3 pyramidal neurons during development. Journal of Neurophysiology, 2015, 113, 786-795.	1.8	6
14	FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes and Development, 2015, 29, 2081-2096.	5.9	91
15	Selective Role of the Catalytic PI3K Subunit p110β in Impaired Higher Order Cognition in Fragile X Syndrome. Cell Reports, 2015, 11, 681-688.	6.4	72
16	Postsynaptic FMRP Promotes the Pruning of Cell-to-Cell Connections among Pyramidal Neurons in the L5A Neocortical Network. Journal of Neuroscience, 2014, 34, 3413-3418.	3.6	56
17	A Role for Dendritic mGluR5-Mediated Local Translation of Arc/Arg3.1 in MEF2-Dependent Synapse Elimination. Cell Reports, 2014, 7, 1589-1600.	6.4	58
18	A Target Cell-Specific Role for Presynaptic <i>Fmr1</i> in Regulating Glutamate Release onto Neocortical Fast-Spiking Inhibitory Neurons. Journal of Neuroscience, 2013, 33, 2593-2604.	3.6	69

JAY R GIBSON

#	Article	IF	CITATIONS
19	Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nature Neuroscience, 2012, 15, 431-440.	14.8	225
20	Altered Neocortical Rhythmic Activity States in <i>Fmr1</i> KO Mice Are Due to Enhanced mGluR5 Signaling and Involve Changes in Excitatory Circuitry. Journal of Neuroscience, 2011, 31, 14223-14234.	3.6	155
21	A dual shaping mechanism for postsynaptic ephrin-B3 as a receptor that sculpts dendrites and synapses. Nature Neuroscience, 2011, 14, 1421-1429.	14.8	69
22	Neuroligin-2 Deletion Selectively Decreases Inhibitory Synaptic Transmission Originating from Fast-Spiking but Not from Somatostatin-Positive Interneurons. Journal of Neuroscience, 2009, 29, 13883-13897.	3.6	144
23	Imbalance of Neocortical Excitation and Inhibition and Altered UP States Reflect Network Hyperexcitability in the Mouse Model of Fragile X Syndrome. Journal of Neurophysiology, 2008, 100, 2615-2626.	1.8	453
24	Differential Activity-Dependent, Homeostatic Plasticity of Two Neocortical Inhibitory Circuits. Journal of Neurophysiology, 2008, 100, 1983-1994.	1.8	67
25	Multiple Gq-Coupled Receptors Converge on a Common Protein Synthesis-Dependent Long-Term Depression That Is Affected in Fragile X Syndrome Mental Retardation. Journal of Neuroscience, 2007, 27, 11624-11634.	3.6	149
26	Activity-Dependent Validation of Excitatory versus Inhibitory Synapses by Neuroligin-1 versus Neuroligin-2. Neuron, 2007, 54, 919-931.	8.1	511
27	Role for the Subthreshold Currents ILeak and IH in the Homeostatic Control of Excitability in Neocortical Somatostatin-Positive Inhibitory Neurons. Journal of Neurophysiology, 2006, 96, 420-432.	1.8	26
28	Functional Properties of Electrical Synapses Between Inhibitory Interneurons of Neocortical Layer 4. Journal of Neurophysiology, 2005, 93, 467-480.	1.8	209
29	Two Dynamically Distinct Inhibitory Networks in Layer 4 of the Neocortex. Journal of Neurophysiology, 2003, 90, 2987-3000.	1.8	530
30	Synchronous Activity of Inhibitory Networks in Neocortex Requires Electrical Synapses Containing Connexin36. Neuron, 2001, 31, 477-485.	8.1	533
31	A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nature Neuroscience, 2000, 3, 904-910.	14.8	462
32	Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 1999, 402, 75-79.	27.8	1,314
33	Sensory Modality Specificity of Neural Activity Related to Memory in Visual Cortex. Journal of Neurophysiology, 1997, 78, 1263-1275.	1.8	153