List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/961917/publications.pdf

Version: 2024-02-01

471509 501196 46 869 17 28 citations h-index g-index papers 47 47 47 314 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of a 5 kW traveling-wave thermoacoustic electric generator. Applied Energy, 2017, 185, 1355-1361.	10.1	94
2	A solar-powered traveling-wave thermoacoustic electricity generator. Solar Energy, 2012, 86, 2376-2382.	6.1	63
3	Study on a heat-driven thermoacoustic refrigerator for low-grade heat recovery. Applied Energy, 2020, 271, 115167.	10.1	51
4	A Heat-driven thermoacoustic cooler capable of reaching liquid nitrogen temperature. Applied Physics Letters, 2005, 86, 224103.	3.3	50
5	Detailed study of a traveling wave thermoacoustic refrigerator driven by a traveling wave thermoacoustic engine. Journal of the Acoustical Society of America, 2006, 119, 2686-2692.	1.1	47
6	Experimental investigation of a 500 W traveling-wave thermoacoustic electricity generator. Science Bulletin, 2011, 56, 1975-1977.	1.7	39
7	A free-piston Stirling generator integrated with a parabolic trough collector for thermal-to-electric conversion of solar energy. Applied Energy, 2019, 242, 1248-1258.	10.1	39
8	Study on energy conversion characteristics of a high frequency standing-wave thermoacoustic heat engine. Applied Energy, 2013, 111, 1147-1151.	10.1	35
9	An efficient looped multiple-stage thermoacoustically-driven cryocooler for liquefaction and recondensation of natural gas. Energy, 2016, 101, 427-433.	8.8	31
10	A heat-driven thermoacoustic cryocooler capable of reaching below liquid hydrogen temperature. Science Bulletin, 2007, 52, 574-576.	1.7	30
11	Thermoacoustic model of a modified free piston Stirling engine with a thermal buffer tube. Applied Energy, 2012, 90, 266-270.	10.1	26
12	A looped three-stage cascade traveling-wave thermoacoustically-driven cryocooler. Energy, 2016, 112, 804-809.	8.8	26
13	A looped heat-driven thermoacoustic refrigeration system with direct-coupling configuration for room temperature cooling. Science Bulletin, 2019, 64, 8-10.	9.0	26
14	A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part â;: Experimental study and comparison. Energy, 2020, 207, 118232.	8.8	24
15	300Hz thermoacoustically driven pulse tube cooler for temperature below 100K. Applied Physics Letters, 2007, 90, 024104.	3.3	22
16	Realization of an ultra-high precision temperature control in a cryogen-free cryostat. Review of Scientific Instruments, 2018, 89, 104901.	1.3	22
17	A combined cooling and power cogeneration system by coupling duplex free-piston stirling cycles and a linear alternator. International Journal of Refrigeration, 2020, 118, 146-149.	3.4	18
18	A 100 W-class traveling-wave thermoacoustic electricity generator. Science Bulletin, 2008, 53, 1453-1456.	9.0	16

#	Article	IF	CITATIONS
19	Traveling-wave thermoacoustic refrigerator for room temperature application. International Journal of Refrigeration, 2020, 120, 90-96.	3.4	16
20	Study on a novel looped heat-driven thermoacoustic refrigerator with direct-coupling configuration for room temperature cooling. International Journal of Refrigeration, 2021, 123, 180-188.	3.4	16
21	Thermoenhanced osmotic power generator via lithium bromide and asymmetric sulfonated poly(ether) Tj ETQq1	1 0.78431 <i>4</i> 7.9	4 rgBT /Ove
22	A novel thermoacoustically-driven liquid metal magnetohydrodynamic generator for future space power applications. Energy Conversion and Management, 2022, 258, 115503.	9.2	16
23	Theoretical investigation on the optimal PU phase relationships of regenerative cooling systems with highest efficiency. Cryogenics, 2019, 98, 5-11.	1.7	14
24	A heat-driven combined cooling and heating system based on thermoacoustic technology. Applied Physics Letters, 2022, 120, .	3.3	14
25	Chinese SPRIGT realizes high temperature stability in the range of 5–25 K. Science Bulletin, 2018, 63, 733-734.	9.0	12
26	Thermoacoustically driven triboelectric nanogenerator: Combining thermoacoustics and nanoscience. Applied Physics Letters, 2017, 111, .	3.3	11
27	Thermoacoustically driven liquid-metal-based triboelectric nanogenerator: A thermal power generator without solid moving parts. Applied Physics Letters, 2021, 118, .	3.3	11
28	An acoustical pump capable of significantly increasing pressure ratio of thermoacoustic heat engines. Science Bulletin, 2006, 51, 1014-1016.	1.7	10
29	Heat transfer characteristics of oscillating flow regenerators in cryogenic temperature range below 20K. Cryogenics, 2009, 49, 313-319.	1.7	9
30	A novel looped low-temperature heat-driven thermoacoustic refrigerator operating in room temperature range. Energy Procedia, 2019, 158, 1653-1659.	1.8	8
31	Numerical and experimental investigations on a regenerative static thermomagnetic generator for low-grade thermal energy recovery. Applied Energy, 2022, 311, 118585.	10.1	7
32	A novel coupling configuration for thermoacoustically-driven pulse tube coolers: Acoustic amplifier. Science Bulletin, 2005, 50, 2113-2115.	9.0	6
33	The Thermodynamic Performance of a Double-Acting Traveling-Wave Thermoacoustic Engine with Liquid-Water Piston. International Journal of Green Energy, 2015, 12, 198-206.	3.8	6
34	A thermoacoustically driven cooler capable of reaching temperature below 77 K with no moving part. Science Bulletin, 2005, 50, 383-384.	1.7	5
35	Influence of acoustic pressure amplifier tube on a 300 Hz thermoacoustically driven pulse tube cooler. Journal of Applied Physics, 2010, 108, 074905.	2.5	5
36	A Novel Thermoacoustic System for Natural Gas Liquefaction. Energy Procedia, 2014, 61, 1042-1046.	1.8	5

#	Article	IF	CITATIONS
37	A 300 Hz high frequency thermoacoustically driven pulse tube cooler. Science Bulletin, 2008, 53, 1270-1271.	9.0	4
38	Influence of the Water-Cooled Heat Exchanger on the Performance of a Pulse Tube Refrigerator. Applied Sciences (Switzerland), 2017, 7, 229.	2.5	4
39	Multi-method modeling to predict the onset conditions and resonance of the piezo coupled thermoacoustic engine. Journal of the Acoustical Society of America, 2022, 151, 4180-4195.	1.1	4
40	Numerical Investigation on a Looped Thermoacoustically-Driven Cryocooler for Natural Gas Liquefaction. Energy Procedia, 2017, 105, 1725-1729.	1.8	3
41	A high-performance thermoacoustic refrigerator operating in room-temperature range. Science Bulletin, 2005, 50, 2662-2664.	1.7	2
42	A Novel Multi-stage Looped Thermoacoustic Heat Engine Using Assembly of Elastic Membrane and a Solid Mass. Energy Procedia, 2017, 105, 2028-2032.	1.8	2
43	Acoustic characteristics of bi-directional turbines for thermoacoustic generators. Frontiers in Energy, 2020, , 1.	2.3	2
44	High efficiency linear compressor driven pulse tube cryocooler operating in liquid nitrogen temperature. Science Bulletin, 2009, 54, 4428-4431.	9.0	1
45	Performance of a 260 Hz pulse tube cooler with metal fiber as the regenerator material. , 2014, , .		О
46	Investigation of High-Stability Temperature Control in Primary Gas Thermometry. Journal of Thermal Science, $0, 1$.	1.9	0