
## Tanya N Mayadas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9619032/publications.pdf Version: 2024-02-01



ΤΛΝΎΛ Ν ΜΛΥΛΠΛς

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. Journal of Experimental Medicine, 2022, 219, .                  | 8.5  | 25        |
| 2  | DOCK4 Regulation of Rho GTPases Mediates Pulmonary Vascular Barrier Function. Arteriosclerosis,<br>Thrombosis, and Vascular Biology, 2022, , 101161ATVBAHA122317565.         | 2.4  | 2         |
| 3  | Inhibitory affinity modulation of FcγRIIA ligand binding by glycosphingolipids by inside-out signaling.<br>Cell Reports, 2021, 35, 109142.                                   | 6.4  | 4         |
| 4  | FcÎ <sup>3</sup> R engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity. Nature Communications, 2021, 12, 4791.    | 12.8 | 55        |
| 5  | Protective heterologous TÂcell immunity in COVID-19 induced by the trivalent MMR and Tdap vaccine antigens. Med, 2021, 2, 1050-1071.e7.                                      | 4.4  | 33        |
| 6  | Neutrophils in lupus nephritis. Current Opinion in Rheumatology, 2019, 31, 193-200.                                                                                          | 4.3  | 38        |
| 7  | Humanised effector-null Fcl <sup>3</sup> RIIA antibody inhibits immune complex-mediated proinflammatory responses. Annals of the Rheumatic Diseases, 2019, 78, 228-237.      | 0.9  | 25        |
| 8  | Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nature Medicine, 2018, 24, 232-238. | 30.7 | 139       |
| 9  | Cis interaction between sialylated FcγRIIA and the αl-domain of Mac-1 limits antibody-mediated neutrophil recruitment. Nature Communications, 2018, 9, 5058.                 | 12.8 | 43        |
| 10 | Lupus and proliferative nephritis are PAD4 independent in murine models. JCI Insight, 2017, 2, .                                                                             | 5.0  | 81        |
| 11 | Neutrophil FcÎ <sup>3</sup> RIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases. Journal of Clinical Investigation, 2017, 127, 3810-3826.           | 8.2  | 48        |
| 12 | The many faces of Macâ€l in autoimmune disease. Immunological Reviews, 2016, 269, 175-193.                                                                                   | 6.0  | 95        |
| 13 | Lactoferrin Suppresses Neutrophil Extracellular Traps Release in Inflammation. EBioMedicine, 2016, 10, 204-215.                                                              | 6.1  | 131       |
| 14 | ICER is requisite for Th17 differentiation. Nature Communications, 2016, 7, 12993.                                                                                           | 12.8 | 64        |
| 15 | AKAP9, a Regulator of Microtubule Dynamics, Contributes to Blood-Testis Barrier Function. American<br>Journal of Pathology, 2016, 186, 270-284.                              | 3.8  | 20        |
| 16 | PKC-δactivation in neutrophils promotes fungal clearance. Journal of Leukocyte Biology, 2016, 100,<br>581-588.                                                               | 3.3  | 27        |
| 17 | A Lupus-Associated Mac-1 Variant Has Defects in Integrin Allostery and Interaction with Ligands under<br>Force. Cell Reports, 2015, 10, 1655-1664.                           | 6.4  | 62        |
| 18 | TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney International, 2015, 87, 281-296.                                                            | 5.2  | 153       |

TANYA N MAYADAS

| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Multifaceted Functions of Neutrophils. Annual Review of Pathology: Mechanisms of Disease, 2014,<br>9, 181-218.                                                                      | 22.4 | 958       |
| 20 | Endothelial TNF Receptor 2 Induces IRF1 Transcription Factor-Dependent Interferon-Î <sup>2</sup> Autocrine<br>Signaling to Promote Monocyte Recruitment. Immunity, 2013, 38, 1025-1037. | 14.3 | 118       |
| 21 | Human Lupus Serum Induces Neutrophil-Mediated Organ Damage in Mice That Is Enabled by Mac-1<br>Deficiency. Journal of Immunology, 2012, 189, 3714-3723.                                 | 0.8  | 57        |
| 22 | Cutting Edge: Protein Phosphatase 2A Confers Susceptibility to Autoimmune Disease through an<br>IL-17–Dependent Mechanism. Journal of Immunology, 2012, 188, 3567-3571.                 | 0.8  | 51        |
| 23 | Endocytosis of soluble immune complexes leads to their clearance by FcγRIIIB but induces neutrophil<br>extracellular traps via FcγRIIA in vivo. Blood, 2012, 120, 4421-4431.            | 1.4  | 196       |
| 24 | The β-Glucan Receptor Dectin-1 Activates the Integrin Mac-1 in Neutrophils via Vav Protein Signaling to Promote Candida albicans Clearance. Cell Host and Microbe, 2011, 10, 603-615.   | 11.0 | 133       |
| 25 | AKAP9 regulation of microtubule dynamics promotes Epac1-induced endothelial barrier properties.<br>Blood, 2011, 117, 708-718.                                                           | 1.4  | 63        |
| 26 | Regulation of human neutrophil Fcl <sup>3</sup> receptor IIa by C5a receptor promotes inflammatory arthritis in mice. Arthritis and Rheumatism, 2011, 63, 467-478.                      | 6.7  | 68        |
| 27 | Neutrophils: game changers in glomerulonephritis?. Trends in Molecular Medicine, 2010, 16, 368-378.                                                                                     | 6.7  | 46        |
| 28 | Mechanisms of Immune Complex–Mediated Neutrophil Recruitment and Tissue Injury. Circulation, 2009, 120, 2012-2024.                                                                      | 1.6  | 171       |
| 29 | Mac-1 (CD11b/CD18) Links Inflammation and Thrombosis After Glomerular Injury. Circulation, 2009, 120, 1255-1265.                                                                        | 1.6  | 77        |
| 30 | Human Neutrophil Fcl <sup>3</sup> Receptors Initiate and Play Specialized Nonredundant Roles in Antibody-Mediated<br>Inflammatory Diseases. Immunity, 2008, 28, 833-846.                | 14.3 | 155       |
| 31 | Role of TNF priming and adhesion molecules in neutrophil recruitment to intravascular immune complexes. Journal of Leukocyte Biology, 2008, 83, 1423-1430.                              | 3.3  | 33        |
| 32 | Role of Epac1, an Exchange Factor for Rap GTPases, in Endothelial Microtubule Dynamics and Barrier<br>Function. Molecular Biology of the Cell, 2008, 19, 1261-1270.                     | 2.1  | 98        |
| 33 | Requirement for Vav Proteins in Post-Recruitment Neutrophil Cytotoxicity in IgG but Not Complement<br>C3-Dependent Injury. Journal of Immunology, 2008, 180, 6279-6287.                 | 0.8  | 20        |
| 34 | Neutrophil-selective CD18 silencing using RNA interference in vivo. Blood, 2008, 111, 3591-3598.                                                                                        | 1.4  | 13        |
| 35 | Primary roles for human neutrophil Fc receptors in the initiation of nephrotoxic glomerulonephritis.<br>FASEB Journal, 2008, 22, 166.10.                                                | 0.5  | 0         |
| 36 | FcγRs join in the cascade. Blood, 2007, 109, 3615-3616.                                                                                                                                 | 1.4  | 5         |

TANYA N MAYADAS

| #  | Article                                                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Leukocyte–Endothelial Cell Interactions. , 2007, , 576-586.                                                                                                                                                                                                                                                             |      | 0         |
| 38 | Mac-1 Signaling via Src-Family and Syk Kinases Results in Elastase-Dependent Thrombohemorrhagic<br>Vasculopathy. Immunity, 2006, 25, 271-283.                                                                                                                                                                           | 14.3 | 111       |
| 39 | Differential roles for β2 integrins in experimental autoimmune bullous pemphigoid. Blood, 2006, 107, 1063-1069.                                                                                                                                                                                                         | 1.4  | 33        |
| 40 | Neutrophil β2 integrins: moderators of life or death decisions. Trends in Immunology, 2005, 26, 388-395.                                                                                                                                                                                                                | 6.8  | 242       |
| 41 | Renal cell–expressed TNF receptor 2, not receptor 1, is essential for the development of glomerulonephritis. Journal of Clinical Investigation, 2005, 115, 1199-1209.                                                                                                                                                   | 8.2  | 90        |
| 42 | Renal cell–expressed TNF receptor 2, not receptor 1, is essential for the development of glomerulonephritis. Journal of Clinical Investigation, 2005, 115, 1199-1209.                                                                                                                                                   | 8.2  | 70        |
| 43 | C1q Governs Deposition of Circulating Immune Complexes and Leukocyte Fc <sup>î</sup> <sup>3</sup> Receptors Mediate<br>Subsequent Neutrophil Recruitment. Journal of Experimental Medicine, 2004, 200, 835-846.                                                                                                         | 8.5  | 64        |
| 44 | FcÎ <sup>3</sup> RIII Mediates Neutrophil Recruitment to Immune Complexes. Immunity, 2001, 14, 693-704.                                                                                                                                                                                                                 | 14.3 | 193       |
| 45 | Mac-1 (CD11b/CD18) is essential for Fc receptor–mediated neutrophil cytotoxicity and immunologic synapse formation. Blood, 2001, 97, 2478-2486.                                                                                                                                                                         | 1.4  | 189       |
| 46 | Glomerular inflammation: use of genetically deficient mice to elucidate the roles of leukocyte<br>adhesion molecules and Fc-gamma receptors in vivo. Current Opinion in Nephrology and Hypertension,<br>1999, 8, 293-298.                                                                                               | 2.0  | 17        |
| 47 | P-selectin deficiency exacerbates experimental glomerulonephritis: a protective role for endothelial<br>P-selectin in inflammation. Journal of Clinical Investigation, 1999, 103, 649-659.                                                                                                                              | 8.2  | 113       |
| 48 | A Role for Mac-1 (CDIIb/CD18) in Immune Complex–stimulated Neutrophil Function In Vivo: Mac-1<br>Deficiency Abrogates Sustained Fcl <sup>3</sup> Receptor–dependent Neutrophil Adhesion and<br>Complement-dependent Proteinuria in Acute Glomerulonephritis. Journal of Experimental Medicine,<br>1997, 186, 1853-1863. | 8.5  | 194       |
| 49 | A Novel Role for the β2 Integrin CD11b/CD18 in Neutrophil Apoptosis: A Homeostatic Mechanism in<br>Inflammation. Immunity, 1996, 5, 653-666.                                                                                                                                                                            | 14.3 | 614       |