Tanya N Mayadas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9619032/publications.pdf

Version: 2024-02-01

49 5,237 33 47
papers citations h-index g-index

49 49 49 7291

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	The Multifaceted Functions of Neutrophils. Annual Review of Pathology: Mechanisms of Disease, 2014, 9, 181-218.	22.4	958
2	A Novel Role for the \hat{I}^2 2 Integrin CD11b/CD18 in Neutrophil Apoptosis: A Homeostatic Mechanism in Inflammation. Immunity, 1996, 5, 653-666.	14.3	614
3	Neutrophil Î ² 2 integrins: moderators of life or death decisions. Trends in Immunology, 2005, 26, 388-395.	6.8	242
4	Endocytosis of soluble immune complexes leads to their clearance by FcγRIIIB but induces neutrophil extracellular traps via FcγRIIA in vivo. Blood, 2012, 120, 4421-4431.	1.4	196
5	A Role for Mac-1 (CDIIb/CD18) in Immune Complex–stimulated Neutrophil Function In Vivo: Mac-1 Deficiency Abrogates Sustained Fcl³ Receptor–dependent Neutrophil Adhesion and Complement-dependent Proteinuria in Acute Glomerulonephritis. Journal of Experimental Medicine, 1997. 186. 1853-1863.	8.5	194
6	FcÎ ³ RIII Mediates Neutrophil Recruitment to Immune Complexes. Immunity, 2001, 14, 693-704.	14.3	193
7	Mac-1 (CD11b/CD18) is essential for Fc receptor–mediated neutrophil cytotoxicity and immunologic synapse formation. Blood, 2001, 97, 2478-2486.	1.4	189
8	Mechanisms of Immune Complex–Mediated Neutrophil Recruitment and Tissue Injury. Circulation, 2009, 120, 2012-2024.	1.6	171
9	Human Neutrophil FcÎ ³ Receptors Initiate and Play Specialized Nonredundant Roles in Antibody-Mediated Inflammatory Diseases. Immunity, 2008, 28, 833-846.	14.3	155
10	TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney International, 2015, 87, 281-296.	5.2	153
11	Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nature Medicine, 2018, 24, 232-238.	30.7	139
12	The \hat{I}^2 -Glucan Receptor Dectin-1 Activates the Integrin Mac-1 in Neutrophils via Vav Protein Signaling to Promote Candida albicans Clearance. Cell Host and Microbe, 2011, 10, 603-615.	11.0	133
13	Lactoferrin Suppresses Neutrophil Extracellular Traps Release in Inflammation. EBioMedicine, 2016, 10, 204-215.	6.1	131
14	Endothelial TNF Receptor 2 Induces IRF1 Transcription Factor-Dependent Interferon- \hat{l}^2 Autocrine Signaling to Promote Monocyte Recruitment. Immunity, 2013, 38, 1025-1037.	14.3	118
15	P-selectin deficiency exacerbates experimental glomerulonephritis: a protective role for endothelial P-selectin in inflammation. Journal of Clinical Investigation, 1999, 103, 649-659.	8.2	113
16	Mac-1 Signaling via Src-Family and Syk Kinases Results in Elastase-Dependent Thrombohemorrhagic Vasculopathy. Immunity, 2006, 25, 271-283.	14.3	111
17	Role of Epac1, an Exchange Factor for Rap GTPases, in Endothelial Microtubule Dynamics and Barrier Function. Molecular Biology of the Cell, 2008, 19, 1261-1270.	2.1	98
18	The many faces of Macâ€1 in autoimmune disease. Immunological Reviews, 2016, 269, 175-193.	6.0	95

#	Article	IF	Citations
19	Renal cell–expressed TNF receptor 2, not receptor 1, is essential for the development of glomerulonephritis. Journal of Clinical Investigation, 2005, 115, 1199-1209.	8.2	90
20	Lupus and proliferative nephritis are PAD4 independent in murine models. JCI Insight, 2017, 2, .	5.0	81
21	Mac-1 (CD11b/CD18) Links Inflammation and Thrombosis After Glomerular Injury. Circulation, 2009, 120, 1255-1265.	1.6	77
22	Renal cell–expressed TNF receptor 2, not receptor 1, is essential for the development of glomerulonephritis. Journal of Clinical Investigation, 2005, 115, 1199-1209.	8.2	70
23	Regulation of human neutrophil $Fc\hat{l}^3$ receptor IIa by C5a receptor promotes inflammatory arthritis in mice. Arthritis and Rheumatism, 2011, 63, 467-478.	6.7	68
24	C1q Governs Deposition of Circulating Immune Complexes and Leukocyte FcÎ ³ Receptors Mediate Subsequent Neutrophil Recruitment. Journal of Experimental Medicine, 2004, 200, 835-846.	8.5	64
25	ICER is requisite for Th17 differentiation. Nature Communications, 2016, 7, 12993.	12.8	64
26	AKAP9 regulation of microtubule dynamics promotes Epac1-induced endothelial barrier properties. Blood, 2011, 117, 708-718.	1.4	63
27	A Lupus-Associated Mac-1 Variant Has Defects in Integrin Allostery and Interaction with Ligands under Force. Cell Reports, 2015, 10, 1655-1664.	6.4	62
28	Human Lupus Serum Induces Neutrophil-Mediated Organ Damage in Mice That Is Enabled by Mac-1 Deficiency. Journal of Immunology, 2012, 189, 3714-3723.	0.8	57
29	Fc \hat{l}^3 R engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity. Nature Communications, 2021, 12, 4791.	12.8	55
30	Cutting Edge: Protein Phosphatase 2A Confers Susceptibility to Autoimmune Disease through an IL-17–Dependent Mechanism. Journal of Immunology, 2012, 188, 3567-3571.	0.8	51
31	Neutrophil Fc \hat{l}^3 RIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases. Journal of Clinical Investigation, 2017, 127, 3810-3826.	8.2	48
32	Neutrophils: game changers in glomerulonephritis?. Trends in Molecular Medicine, 2010, 16, 368-378.	6.7	46
33	Cis interaction between sialylated Fc \hat{l}^3 RIIA and the $\hat{l}\pm l$ -domain of Mac-1 limits antibody-mediated neutrophil recruitment. Nature Communications, 2018, 9, 5058.	12.8	43
34	Neutrophils in lupus nephritis. Current Opinion in Rheumatology, 2019, 31, 193-200.	4.3	38
35	Differential roles for \hat{I}^22 integrins in experimental autoimmune bullous pemphigoid. Blood, 2006, 107, 1063-1069.	1.4	33
36	Role of TNF priming and adhesion molecules in neutrophil recruitment to intravascular immune complexes. Journal of Leukocyte Biology, 2008, 83, 1423-1430.	3.3	33

#	Article	IF	CITATIONS
37	Protective heterologous TÂcell immunity in COVID-19 induced by the trivalent MMR and Tdap vaccine antigens. Med, 2021, 2, 1050-1071.e7.	4.4	33
38	PKC-δ activation in neutrophils promotes fungal clearance. Journal of Leukocyte Biology, 2016, 100, 581-588.	3.3	27
39	Humanised effector-null $Fc\hat{l}^3$ RIIA antibody inhibits immune complex-mediated proinflammatory responses. Annals of the Rheumatic Diseases, 2019, 78, 228-237.	0.9	25
40	Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. Journal of Experimental Medicine, 2022, 219, .	8.5	25
41	Requirement for Vav Proteins in Post-Recruitment Neutrophil Cytotoxicity in IgG but Not Complement C3-Dependent Injury. Journal of Immunology, 2008, 180, 6279-6287.	0.8	20
42	AKAP9, a Regulator of Microtubule Dynamics, Contributes to Blood-Testis Barrier Function. American Journal of Pathology, 2016, 186, 270-284.	3.8	20
43	Glomerular inflammation: use of genetically deficient mice to elucidate the roles of leukocyte adhesion molecules and Fc-gamma receptors in vivo. Current Opinion in Nephrology and Hypertension, 1999, 8, 293-298.	2.0	17
44	Neutrophil-selective CD18 silencing using RNA interference in vivo. Blood, 2008, 111, 3591-3598.	1.4	13
45	FcÎ ³ Rs join in the cascade. Blood, 2007, 109, 3615-3616.	1.4	5
46	Inhibitory affinity modulation of FcγRIIA ligand binding by glycosphingolipids by inside-out signaling. Cell Reports, 2021, 35, 109142.	6.4	4
47	DOCK4 Regulation of Rho GTPases Mediates Pulmonary Vascular Barrier Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, , 101161ATVBAHA122317565.	2.4	2
48	Leukocyte–Endothelial Cell Interactions. , 2007, , 576-586.		0
49	Primary roles for human neutrophil Fc receptors in the initiation of nephrotoxic glomerulonephritis. FASEB Journal, 2008, 22, 166.10.	0.5	O