Neal X Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9618755/publications.pdf

Version: 2024-02-01

		218677	197818
58	2,484	26	49
papers	citations	h-index	g-index
58	58	58	2895
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<scp>Nonâ€Additive</scp> Effects of Combined <scp>NOX1</scp> /4 Inhibition and Calcimimetic Treatment on a Rat Model of Chronic Kidney Diseaseâ€Mineral and Bone Disorder (<scp>CKDâ€MBD</scp>). JBMR Plus, 2022, 6, e10600.	2.7	2
2	Cortical porosity development and progression is mitigated after etelcalcetide treatment in an animal model of chronic kidney disease. Bone, 2022, 157, 116340.	2.9	7
3	Cortical porosity is elevated after a single dose of zoledronate in two rodent models of chronic kidney disease. Bone Reports, 2022, 16, 101174.	0.4	1
4	Effects of ferric citrate and intravenous iron sucrose on markers of mineral, bone, and iron homeostasis in a rat model of CKD-MBD. Nephrology Dialysis Transplantation, 2022, 37, 1857-1867.	0.7	5
5	Reversing cortical porosity: Cortical pore infilling in preclinical models of chronic kidney disease. Bone, 2021, 143, 115632.	2.9	13
6	Age and sex effects on FGF23-mediated response to mild phosphate challenge. Bone, 2021, 146, 115885.	2.9	19
7	Skeletal muscle metabolic responses to physical activity are muscle type specific in a rat model of chronic kidney disease. Scientific Reports, 2021, 11, 9788.	3.3	2
8	Regulation of reactive oxygen species in the pathogenesis of matrix vesicles induced calcification of recipient vascular smooth muscle cells. Vascular Medicine, 2021, 26, 585-594.	1.5	9
9	Single-cell RNA sequencing of intramedullary canal tissue to improve methods for studying fracture repair biology. BioTechniques, 2021, 71, 431-438.	1.8	1
10	Predicting fracture healing with blood biomarkers: the potential to assess patient risk of fracture nonunion. Biomarkers, 2021, 26, 703-717.	1.9	5
11	Phosphate Binders and Nonphosphate Effects in the Gastrointestinal Tract. , 2020, 30, 4-10.		24
12	Kidney Disease Progression Does Not Decrease Intestinal Phosphorus Absorption in a Rat Model of Chronic Kidney Disease–Mineral Bone Disorder. Journal of Bone and Mineral Research, 2020, 35, 333-342.	2.8	14
13	Effect of Advanced Glycation Endâ€Products (AGE) Lowering Drug ALTâ€₹11 on Biochemical, Vascular, and Bone Parameters in a Rat Model of CKDâ€MBD. Journal of Bone and Mineral Research, 2020, 35, 608-617.	2.8	31
14	Adverse Effects of Autoclaved Diets on the Progression of Chronic Kidney Disease and Chronic Kidney Disease-Mineral Bone Disorder in Rats. American Journal of Nephrology, 2020, 51, 381-389.	3.1	4
15	N-acetylcysteine (NAC), an anti-oxidant, does not improve bone mechanical properties in a rat model of progressive chronic kidney disease-mineral bone disorder. PLoS ONE, 2020, 15, e0230379.	2.5	6
16	Title is missing!. , 2020, 15, e0230379.		0
17	Title is missing!. , 2020, 15, e0230379.		O
18	Title is missing!. , 2020, 15, e0230379.		0

#	Article	IF	Citations
19	Title is missing!. , 2020, 15, e0230379.		O
20	Skeletal levels of bisphosphonate in the setting of chronic kidney disease are independent of remodeling rate and lower with fractionated dosing. Bone, 2019, 127, 419-426.	2.9	6
21	Effect of ovariectomy on the progression of chronic kidney disease-mineral bone disorder (CKD-MBD) in female Cy/+ rats. Scientific Reports, 2019, 9, 7936.	3.3	14
22	Time course of rapid bone loss and cortical porosity formation observed by longitudinal \hat{l} 4CT in a rat model of CKD. Bone, 2019, 125, 16-24.	2.9	27
23	Matrix vesicles induce calcification of recipient vascular smooth muscle cells through multiple signaling pathways. Kidney International, 2018, 93, 343-354.	5.2	88
24	Effect of dietary phosphorus intake and age on intestinal phosphorus absorption efficiency and phosphorus balance in male rats. PLoS ONE, 2018, 13, e0207601.	2.5	14
25	Fibroblast growth factor 23 does not directly influence skeletal muscle cell proliferation and differentiation or ex vivo muscle contractility. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E594-E604.	3.5	30
26	Skeletal vascular perfusion is altered in chronic kidney disease. Bone Reports, 2018, 8, 215-220.	0.4	3
27	Skeletal Muscle Regeneration and Oxidative Stress Are Altered in Chronic Kidney Disease. PLoS ONE, 2016, 11, e0159411.	2.5	62
28	Intracellular calcium increases in vascular smooth muscle cells with progression of chronic kidney disease in a rat model. Nephrology Dialysis Transplantation, 2016, 32, gfw274.	0.7	20
29	Subcutaneous nerve activity and mechanisms of sudden death in a rat model of chronic kidney disease. Heart Rhythm, 2016, 13, 1105-1112.	0.7	11
30	Raloxifene improves skeletal properties in an animalÂmodel of cystic chronic kidney disease. Kidney International, 2016, 89, 95-104.	5.2	19
31	Differential miRNA Expression in Cells and Matrix Vesicles in Vascular Smooth Muscle Cells from Rats with Kidney Disease. PLoS ONE, 2015, 10, e0131589.	2.5	37
32	Reduced skeletal muscle function is associated with decreased fiber cross-sectional area in the Cy/+ rat model of progressive kidney disease. Nephrology Dialysis Transplantation, 2015, 31, gfv352.	0.7	16
33	Low Bone Turnover in Chronic Kidney Disease Is Associated with Decreased VEGF-A Expression and Osteoblast Differentiation. American Journal of Nephrology, 2015, 41, 464-473.	3.1	17
34	Compromised vertebral structural and mechanical properties associated with progressive kidney disease and the effects of traditional pharmacological interventions. Bone, 2015, 77, 50-56.	2.9	23
35	Pathophysiology of Vascular Calcification. Current Osteoporosis Reports, 2015, 13, 372-380.	3.6	83
36	Anti-Sclerostin Antibody Treatment in a Rat Model of Progressive Renal Osteodystrophy. Journal of Bone and Mineral Research, 2015, 30, 499-509.	2.8	103

#	Article	IF	CITATIONS
37	Treating Bone Quality in Chronic Kidney Disease. FASEB Journal, 2015, 29, 702.1.	0.5	O
38	Adipocyte induced arterial calcification is prevented with sodium thiosulfate. Biochemical and Biophysical Research Communications, 2014, 449, 151-156.	2.1	61
39	Cortical Bone Mechanical Properties Are Altered in an Animal Model of Progressive Chronic Kidney Disease. PLoS ONE, 2014, 9, e99262.	2.5	40
40	Transglutaminase 2 Accelerates Vascular Calcification in Chronic Kidney Disease. American Journal of Nephrology, 2013, 37, 191-198.	3.1	35
41	Decreased MicroRNA Is Involved in the Vascular Remodeling Abnormalities in Chronic Kidney Disease (CKD). PLoS ONE, 2013, 8, e64558.	2.5	106
42	Reducing parathyroid hormone is essential for correcting cortical bone deficiencies associated with chronic kidney disease. FASEB Journal, 2013, 27, 967.10.	0.5	0
43	Vascular Calcification: Pathophysiology and Risk Factors. Current Hypertension Reports, 2012, 14, 228-237.	3.5	150
44	Activation of Arterial Matrix Metalloproteinases Leads to Vascular Calcification in Chronic Kidney Disease. American Journal of Nephrology, 2011, 34, 211-219.	3.1	76
45	The pathophysiology of early-stage chronic kidney disease–mineral bone disorder (CKD-MBD) and response to phosphate binders in the rat. Journal of Bone and Mineral Research, 2011, 26, 2672-2681.	2.8	82
46	Calcimimetics inhibit renal pathology in rodent nephronophthisis. Kidney International, 2011, 80, 612-619.	5.2	30
47	RhoA/Rho kinase (ROCK) alters fetuin-A uptake and regulates calcification in bovine vascular smooth muscle cells (BVSMC). American Journal of Physiology - Renal Physiology, 2010, 299, F674-F680.	2.7	29
48	Verapamil inhibits calcification and matrix vesicle activity of bovine vascular smooth muscle cells. Kidney International, 2010, 77, 436-442.	5.2	51
49	A rat model of chronic kidney disease-mineral bone disorder. Kidney International, 2009, 75, 176-184.	5. 2	136
50	Annexin-Mediated Matrix Vesicle Calcification in Vascular Smooth Muscle Cells. Journal of Bone and Mineral Research, 2008, 23, 1798-1805.	2.8	147
51	Fetuin-A uptake in bovine vascular smooth muscle cells is calcium dependent and mediated by annexins. American Journal of Physiology - Renal Physiology, 2007, 292, F599-F606.	2.7	55
52	Uremic Vascular Calcification. Journal of Investigative Medicine, 2006, 54, 380-384.	1.6	24
53	High glucose increases the expression of Cbfa1 and BMP-2 and enhances the calcification of vascular smooth muscle cells. Nephrology Dialysis Transplantation, 2006, 21, 3435-3442.	0.7	159
54	Vascular calcification in chronic kidney disease. Seminars in Nephrology, 2004, 24, 61-68.	1.6	48

#	Article	IF	CITATION
55	Arterial calcification in diabetes. Current Diabetes Reports, 2003, 3, 28-32.	4.2	142
56	Fluid shear-induced NFήB translocation in osteoblasts is mediated by intracellular calcium release. Bone, 2003, 33, 399-410.	2.9	83
57	Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney International, 2002, 62, 1724-1731.	5.2	297
58	The Role of the Synovium and Cartilage in the Pathogenesis of β2â€Microglobulin Amyloidosis. Seminars in Dialysis, 2001, 14, 127-130.	1.3	17