Ju-Yi Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9618443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–A review. Desalination, 2018, 429, 119-133.	4.0	239
2	Synthesis of Selfâ€Assembled Spermidineâ€Carbon Quantum Dots Effective against Multidrugâ€Resistant Bacteria. Advanced Healthcare Materials, 2016, 5, 2545-2554.	3.9	151
3	High Amplification of the Antiviral Activity of Curcumin through Transformation into Carbon Quantum Dots. Small, 2019, 15, e1902641.	5.2	110
4	Ultrastrong trapping of VEGF by graphene oxide: Anti-angiogenesis application. Biomaterials, 2016, 109, 12-22.	5.7	63
5	Carbonized nanogels for simultaneous antibacterial and antioxidant treatment of bacterial keratitis. Chemical Engineering Journal, 2021, 411, 128469.	6.6	58
6	Nanoparticle-based laser desorption/ionization mass spectrometric analysis of drugs and metabolites. Journal of Food and Drug Analysis, 2018, 26, 1215-1228.	0.9	49
7	Detection of urinary spermine by using silver-gold/silver chloride nanozymes. Analytica Chimica Acta, 2018, 1009, 89-97.	2.6	44
8	Metal-deposited bismuth oxyiodide nanonetworks with tunable enzyme-like activity: sensing of mercury and lead ions. Materials Chemistry Frontiers, 2017, 1, 893-899.	3.2	34
9	Strain engineering for highâ€level 5â€aminolevulinic acid production in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2021, 118, 30-42.	1.7	21
10	Self-assembled, bivalent aptamers on graphene oxide as an efficient anticoagulant. Biomaterials Science, 2018, 6, 1882-1891.	2.6	19
11	Development of antiviral carbon quantum dots that target the Japanese encephalitis virus envelope protein. Journal of Biological Chemistry, 2022, 298, 101957.	1.6	18
12	Satellite-like Gold Nanocomposites for Targeted Mass Spectrometry Imaging of Tumor Tissues. Nanotheranostics, 2017, 1, 141-153.	2.7	15
13	Platinum ions mediate the interactions between DNA and carbon quantum dots: diagnosis of MRSA infections. Journal of Materials Chemistry B, 2020, 8, 3506-3512.	2.9	15
14	DNA Modulates the Interaction of Genetically Engineered DNA-Binding Proteins and Gold Nanoparticles: Diagnosis of High-Risk HPV Infection. ACS Applied Materials & Interfaces, 2017, 9, 44307-44315.	4.0	12
15	Carbonized Lysine-Nanogels Protect against Infectious Bronchitis Virus. International Journal of Molecular Sciences, 2021, 22, 5415.	1.8	11
16	Carbon nanogels exert multipronged attack on resistant bacteria and strongly constrain resistance evolution. Journal of Colloid and Interface Science, 2022, 608, 1813-1826.	5.0	11
17	In situ synthesis of core-shell carbon nanowires as a potent targeted anticoagulant. Journal of Colloid and Interface Science, 2019, 552, 583-596.	5.0	9
18	Thermally driven formation of polyphenolic carbonized nanogels with high anticoagulant activity from polysaccharides. Biomaterials Science, 2021, 9, 4679-4690.	2.6	9

Ju-Υι ΜΑΟ

#	Article	IF	CITATIONS
19	How to evaluate the potential toxicity of therapeutic carbon nanomaterials? A comprehensive study of carbonized nanogels with multiple animal toxicity test models. Journal of Hazardous Materials, 2022, 429, 128337.	6.5	9
20	Pulse laser-induced fragmentation of carbon quantum dots: a structural analysis. Nanoscale, 2017, 9, 18359-18367.	2.8	8
21	Highâ€level heterologous production of propionate in engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2020, 117, 1304-1315.	1.7	8
22	Supramolecular Aptamers on Graphene Oxide for Efficient Inhibition of Thrombin Activity. Frontiers in Chemistry, 2019, 7, 280.	1.8	7
23	Bio-based production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with modulated monomeric fraction in Escherichia coli. Applied Microbiology and Biotechnology, 2021, 105, 1435-1446.	1.7	7
24	Carbon-based low-pressure filtration membrane for the dynamic disruption of bacteria from contaminated water. Water Research, 2022, 212, 118121.	5.3	6
25	Multifunctional carbonized nanogels to treat lethal acute hepatopancreatic necrosis disease. Journal of Nanobiotechnology, 2021, 19, 448.	4.2	5
26	Integrated strain engineering and bioprocessing strategies for high-level bio-based production of	1.7	4

3-hydroxyvalerate in Escherichia coli. Applied Microbiology and Biotechnology, 2020, 104, 5259-5272. 26