Sungjin Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9617494/publications.pdf

Version: 2024-02-01

		117625	118850
62	4,977	34	62
papers	citations	h-index	g-index
62	62	62	5978
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Processing and 3D printing of SiCN polymerâ€derived ceramics. International Journal of Applied Ceramic Technology, 2022, 19, 939-948.	2.1	7
2	Mesoporous Mulberry-like CoMoO ₄ : A Highly Suitable Anode Material for Sodium Ion Batteries over Lithium Ion Batteries. ACS Applied Energy Materials, 2022, 5, 126-136.	5.1	12
3	Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nature Nanotechnology, 2022, 17, 590-597.	31.5	81
4	Closed-loop additive manufacturing of upcycled commodity plastic through dynamic cross-linking. Science Advances, 2022, 8, .	10.3	33
5	In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization. Nature Communications, 2021, 12, 667.	12.8	60
6	Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nature Photonics, 2021, 15, 148-155.	31.4	590
7	Chiral polymer hosts for circularly polarized electroluminescence devices. Chemical Science, 2021, 12, 8668-8681.	7.4	28
8	Direct ink writing techniques for in situ gelation and solidification. MRS Communications, 2021, 11 , $106-121$.	1.8	25
9	Quantum-confinement effect on the linewidth broadening of metal halide perovskite-based quantum dots. Journal of Physics Condensed Matter, 2021, 33, .	1.8	4
10	Synergistic Molecular Engineering of Holeâ€Injecting Conducting Polymers Overcomes Luminescence Quenching in Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100646.	7.3	14
11	Microwave-Assisted Rapid Synthesis of NH4V4O10 Layered Oxide: A High Energy Cathode for Aqueous Rechargeable Zinc Ion Batteries. Nanomaterials, 2021, 11, 1905.	4.1	8
12	Polymers with Dynamic Bonds: Adaptive Functional Materials for a Sustainable Future. Journal of Physical Chemistry B, 2021, 125, 9389-9401.	2.6	66
13	Chemically Robust Indium Tin Oxide/Graphene Anode for Efficient Perovskite Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9074-9080.	8.0	6
14	Design of tough adhesive from commodity thermoplastics through dynamic crosslinking. Science Advances, 2021, 7, eabk2451.	10.3	66
15	Validating the Structural (In)stability of P3- and P2-Na _{0.67} Mg _{0.1} Mn _{0.9} O ₂ -Layered Cathodes for Sodium-Ion Batteries: A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries: A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decisive Approach. ACS Applied Materials & Sodium-Ion Batteries. A Time-Decision Account Accoun	8.0	10
16	Na $<$ sub $>$ 2.3 $<$ /sub $>$ Cu $<$ sub $>$ 1.1 $<$ /sub $>$ Mn $<$ sub $>$ 2 $<$ /sub $>$ O $<$ sub $>$ 7 $\hat{a}^{\sim}\hat{i}^{<}$ /sub $>$ nanoflakes as enhanced cathode materials for high-energy sodium-ion batteries achieved by a rapid pyrosynthesis approach. Journal of Materials Chemistry A, 2020, 8, 770-778.	10.3	20
17	Suppressing Ï€â€"Ï€ stacking interactions for enhanced solid-state emission of flat aromatic molecules <i>via</i> edge functionalization with picket-fence-type groups. Journal of Materials Chemistry C, 2020, 8, 17289-17296.	5 . 5	16
18	High lithium storage properties in a manganese sulfide anode <i>via</i> an intercalation-cum-conversion reaction. Journal of Materials Chemistry A, 2020, 8, 17537-17549.	10.3	15

#	Article	IF	CITATIONS
19	Electroplated Silver–Nickel Core–Shell Nanowire Network Electrodes for Highly Efficient Perovskite Nanoparticle Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 39479-39486.	8.0	21
20	Perovskite Emitters as a Platform Material for Downâ€Conversion Applications. Advanced Materials Technologies, 2020, 5, 2000091.	5.8	38
21	Multidimensional Na ₄ VMn _{0.9} Cu _{0.1} (PO ₄) ₃ /C cotton-candy cathode materials for high energy Na-ion batteries. Journal of Materials Chemistry A, 2020, 8, 12055-12068.	10.3	48
22	Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. ACS Energy Letters, 2020, 5, 2376-2400.	17.4	303
23	Electroluminescence of Perovskite Nanocrystals with Ligand Engineering. Trends in Chemistry, 2020, 2, 837-849.	8.5	22
24	Structural and electrochemical behavior of a NiMnO ₃ /Mn ₂ O ₃ nanocomposite as an anode for high rate and long cycle lithium ion batteries. New Journal of Chemistry, 2019, 43, 12916-12922.	2.8	4
25	Uniform Carbon Coated Na ₃ V ₂ F _{3â€"2<i>x</i>} F _{536€"2<i>x</i>} F _{7. 18826-18834.}	/sub>	16
26	Facile synthesis of reduced graphene oxide by modified Hummer's method as anode material for Li-, Na- and K-ion secondary batteries. Royal Society Open Science, 2019, 6, 181978.	2.4	60
27	Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries. Nano Research, 2019, 12, 911-917.	10.4	38
28	Fine Control of Perovskite Crystallization and Reducing Luminescence Quenching Using Selfâ€Doped Polyaniline Hole Injection Layer for Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2019, 29, 1807535.	14.9	58
29	Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn ₂ V ₂ O ₇ nanowire cathode through intercalation regulation. Journal of Materials Chemistry A, 2018, 6, 3850-3856.	10.3	293
30	Pyrosynthesis of Na ₃ V ₂ (PO ₄) ₃ @C Cathodes for Safe and Lowâ€Cost Aqueous Hybrid Batteries. ChemSusChem, 2018, 11, 2239-2247.	6.8	47
31	Na $<$ sub $>$ 2 $<$ /sub $>$ V $<$ sub $>$ 6 $<$ /sub $>$ 0 $<$ sub $>$ 16 $<$ /sub $>$ Â \cdot 3H $<$ sub $>$ 2 $<$ /sub $>$ 0 Barnesite Nanorod: An Open Door to Display a Stable and High Energy for Aqueous Rechargeable Zn-lon Batteries as Cathodes. Nano Letters, 2018, 18, 2402-2410.	9.1	461
32	Dandelion-shaped manganese sulfide in ether-based electrolyte for enhanced performance sodium-ion batteries. Communications Chemistry, 2018, 1 , .	4.5	37
33	Metal Halide Perovskites: From Crystal Formations to Lightâ€Emittingâ€Diode Applications. Small Methods, 2018, 2, 1800093.	8.6	36
34	Aqueous Magnesium Zinc Hybrid Battery: An Advanced High-Voltage and High-Energy MgMn ₂ O ₄ Cathode. ACS Energy Letters, 2018, 3, 1998-2004.	17.4	159
35	K ₂ V ₆ O ₁₆ Â \cdot 2.7H ₂ O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2018, 6, 15530-15539.	10.3	201
36	Enhanced Water Retention Maintains Energy Dissipation in Dehydrated Metal-Coordinate Polymer Networks: Another Role for Fe-Catechol Cross-Links?. Chemistry of Materials, 2018, 30, 3648-3655.	6.7	34

#	Article	IF	CITATIONS
37	Facile green synthesis of a Co $3V2O8$ nanoparticle electrode for high energy lithium-ion battery applications. Journal of Colloid and Interface Science, 2017, 501, 133-141.	9.4	39
38	One-pot pyro-synthesis of a high energy density LiFePO 4 -Li $3V2$ (PO 4) 3 nanocomposite cathode for lithium-ion battery applications. Ceramics International, 2017, 43, 4288-4294.	4.8	11
39	Facile synthesis and the exploration of the zinc storage mechanism of \hat{l}^2 -MnO ₂ nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23299-23309.	10.3	297
40	An Enhanced High-Rate Na ₃ V ₂ (PO ₄) ₃ -Ni ₂ P Nanocomposite Cathode with Stable Lifetime for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 35235-35242.	8.0	35
41	An in-situ gas chromatography investigation into the suppression of oxygen gas evolution by coated amorphous cobalt-phosphate nanoparticles on oxide electrode. Scientific Reports, 2016, 6, 23394.	3.3	6
42	High rate performance of a NaTi ₂ (PO ₄) ₃ /rGO composite electrode via pyro synthesis for sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 7815-7822.	10.3	60
43	A sponge network-shaped Mn ₃ O ₄ /C anode derived from a simple, one-pot metal organic framework-combustion technique for improved lithium ion storage. Inorganic Chemistry Frontiers, 2016, 3, 1609-1615.	6.0	31
44	Metal–organic framework-combustion: a new, cost-effective and one-pot technique to produce a porous Co ₃ V ₂ O ₈ microsphere anode for high energy lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 14605-14613.	10.3	64
45	Oneâ€Step Pyroâ€Synthesis of a Nanostructured Mn ₃ O ₄ /C Electrode with Long Cycle Stability for Rechargeable Lithiumâ€lon Batteries. Chemistry - A European Journal, 2016, 22, 2039-2045.	3.3	40
46	Co ₃ V ₂ O ₈ Sponge Network Morphology Derived from Metal–Organic Framework as an Excellent Lithium Storage Anode Material. ACS Applied Materials & & amp; Interfaces, 2016, 8, 8546-8553.	8.0	139
47	A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chemical Physics Letters, 2016, 650, 64-68.	2.6	142
48	Porous TiN nanoparticles embedded in a N-doped carbon composite derived from metal–organic frameworks as a superior anode in lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 4706-4710.	10.3	39
49	Betaâ€Sheetâ€Forming, Selfâ€Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications. Small, 2015, 11, 3623-3640.	10.0	161
50	Li3V2(PO4)3/graphene nanocomposite as a high performance cathode material for lithium ion battery. Ceramics International, 2015, 41, 389-396.	4.8	23
51	Amorphous iron phosphate: potential host for various charge carrier ions. NPG Asia Materials, 2014, 6, e138-e138.	7.9	213
52	Electrochemical lithium storage of a ZnFe ₂ O ₄ /graphene nanocomposite as an anode material for rechargeable lithium ion batteries. RSC Advances, 2014, 4, 47087-47095.	3.6	27
53	Enhanced electrochemical performance of novel K-doped Co ₃ O ₄ as the anode material for secondary lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 6966-6975.	10.3	45
54	Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries. Scientific Reports, 2014, 4, 4047.	3.3	57

Sungjin Kim

#	Article	IF	CITATIONS
55	A high voltage LiMnPO4–LiMn2O4 nanocomposite cathode synthesized by a one-pot pyro synthesis for Li-ion batteries. RSC Advances, 2013, 3, 25640.	3.6	15
56	Mesoporous manganese dioxide cathode prepared by an ambient temperature synthesis for Na-ion batteries. RSC Advances, 2013, 3, 26328.	3.6	12
57	Bioâ€Inspired Synthesis of Minerals for Energy, Environment, and Medicinal Applications. Advanced Functional Materials, 2013, 23, 10-25.	14.9	94
58	Fully activated Li2MnO3 nanoparticles by oxidation reaction. Journal of Materials Chemistry, 2012, 22, 11772.	6.7	63
59	Bio-inspired mineralization of CO2 gas to hollow CaCO3 microspheres and bone hydroxyapatite/polymer composites. Journal of Materials Chemistry, 2011, 21, 11070.	6.7	33
60	Graphene–Biomineral Hybrid Materials. Advanced Materials, 2011, 23, 2009-2014.	21.0	168
61	Mussel-inspired transformation of CaCO3 to bone minerals. Biomaterials, 2010, 31, 6628-6634.	11.4	113
62	Dopamine-Induced Mineralization of Calcium Carbonate Vaterite Microspheres. Langmuir, 2010, 26, 14730-14736.	3.5	113