
Michael D Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/961447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.	27.8	1,872
2	Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell, 2012, 22, 425-437.	16.8	1,551
3	Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica, 2012, 123, 465-472.	7.7	1,536
4	Medulloblastoma Comprises Four Distinct Molecular Variants. Journal of Clinical Oncology, 2011, 29, 1408-1414.	1.6	1,131
5	Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell, 2015, 27, 728-743.	16.8	933
6	Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 2012, 123, 473-484.	7.7	863
7	Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2017, 31, 737-754.e6.	16.8	836
8	The whole-genome landscape of medulloblastoma subtypes. Nature, 2017, 547, 311-317.	27.8	787
9	Dissecting the genomic complexity underlying medulloblastoma. Nature, 2012, 488, 100-105.	27.8	765
10	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	27.8	761
11	Radial glia cells are candidate stem cells of ependymoma. Cancer Cell, 2005, 8, 323-335.	16.8	758
12	Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations. Cell, 2012, 148, 59-71.	28.9	743
13	Mutations in SUFU predispose to medulloblastoma. Nature Genetics, 2002, 31, 306-310.	21.4	722
14	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.	28.9	702
15	Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 2012, 488, 106-110.	27.8	675
16	Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genetics, 2013, 45, 927-932.	21.4	674
17	The Genetic Landscape of the Childhood Cancer Medulloblastoma. Science, 2011, 331, 435-439.	12.6	652
18	Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition. Cancer Cell, 2014, 25, 393-405.	16.8	627

#	Article	IF	CITATIONS
19	Genomics Identifies Medulloblastoma Subgroups That Are Enriched for Specific Genetic Alterations. Journal of Clinical Oncology, 2006, 24, 1924-1931.	1.6	617
20	Comprehensive Analysis of Hypermutation in Human Cancer. Cell, 2017, 171, 1042-1056.e10.	28.9	596
21	Medulloblastomics: the end of the beginning. Nature Reviews Cancer, 2012, 12, 818-834.	28.4	560
22	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	27.6	540
23	Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature, 2017, 543, 122-125.	27.8	530
24	Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 2014, 511, 428-434.	27.8	520
25	Delineation of Two Clinically and Molecularly Distinct Subgroups of Posterior Fossa Ependymoma. Cancer Cell, 2011, 20, 143-157.	16.8	494
26	Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathologica, 2016, 131, 821-831.	7.7	478
27	Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer Cell, 2016, 29, 379-393.	16.8	438
28	Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. Journal of Neurosurgery, 1999, 90, 35-41.	1.6	429
29	Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nature Genetics, 2009, 41, 465-472.	21.4	391
30	Subgroup-Specific Prognostic Implications of <i>TP53</i> Mutation in Medulloblastoma. Journal of Clinical Oncology, 2013, 31, 2927-2935.	1.6	381
31	Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature, 2014, 510, 537-541.	27.8	378
32	Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature, 2012, 482, 529-533.	27.8	376
33	Medulloblastoma. Nature Reviews Disease Primers, 2019, 5, 11.	30.5	376
34	The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation. Cell, 2013, 153, 1064-1079.	28.9	348
35	YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes and Development, 2009, 23, 2729-2741.	5.9	332
36	Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature, 2010, 466, 632-636.	27.8	324

#	Article	IF	CITATIONS
37	Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature, 2017, 549, 227-232.	27.8	321
38	Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathologica, 2012, 123, 615-626.	7.7	318
39	Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncology, The, 2013, 14, 1200-1207.	10.7	307
40	Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nature Genetics, 2015, 47, 257-262.	21.4	306
41	Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Science Translational Medicine, 2017, 9, .	12.4	306
42	Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature, 2019, 572, 67-73.	27.8	293
43	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncology, The, 2016, 17, 484-495.	10.7	274
44	The miR-17/92 Polycistron Is Up-regulated in Sonic Hedgehog–Driven Medulloblastomas and Induced by N-myc in Sonic Hedgehog–Treated Cerebellar Neural Precursors. Cancer Research, 2009, 69, 3249-3255.	0.9	273
45	The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathologica, 2017, 133, 5-12.	7.7	271
46	Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncology, The, 2018, 19, 785-798.	10.7	268
47	An Animal Model of MYC-Driven Medulloblastoma. Cancer Cell, 2012, 21, 155-167.	16.8	267
48	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	27.8	266
49	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	1.6	263
50	The clinical implications of medulloblastoma subgroups. Nature Reviews Neurology, 2012, 8, 340-351.	10.1	261
51	Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathologica, 2013, 125, 913-916.	7.7	244
52	<i>BRAF</i> Mutation and <i>CDKN2A</i> Deletion Define a Clinically Distinct Subgroup of Childhood Secondary High-Grade Glioma. Journal of Clinical Oncology, 2015, 33, 1015-1022.	1.6	244
53	Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas. Cancer Cell, 2020, 37, 569-583.e5.	16.8	244
54	Quiescent Sox2+ Cells Drive Hierarchical Growth and Relapse in Sonic Hedgehog Subgroup Medulloblastoma. Cancer Cell, 2014, 26, 33-47.	16.8	241

#	Article	IF	CITATIONS
55	MicroRNA-199b-5p Impairs Cancer Stem Cells through Negative Regulation of HES1 in Medulloblastoma. PLoS ONE, 2009, 4, e4998.	2.5	233
56	Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. Journal of Clinical Oncology, 2017, 35, 2934-2941.	1.6	232
57	Adult Medulloblastoma Comprises Three Major Molecular Variants. Journal of Clinical Oncology, 2011, 29, 2717-2723.	1.6	215
58	Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. Lancet Oncology, The, 2013, 14, 534-542.	10.7	212
59	Frequent Amplification of a chr19q13.41 MicroRNA Polycistron in Aggressive Primitive Neuroectodermal Brain Tumors. Cancer Cell, 2009, 16, 533-546.	16.8	207
60	HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC- Driven Medulloblastoma. Cancer Cell, 2016, 29, 311-323.	16.8	204
61	Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nature Communications, 2019, 10, 4343.	12.8	200
62	Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathologica, 2018, 136, 211-226.	7.7	199
63	Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathologica, 2011, 122, 231-240.	7.7	195
64	Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathologica, 2014, 128, 279-289.	7.7	191
65	Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell, 2016, 30, 891-908.	16.8	191
66	Roadmap for the Emerging Field of Cancer Neuroscience. Cell, 2020, 181, 219-222.	28.9	182
67	Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathologica, 2019, 138, 309-326.	7.7	180
68	Distinct Neural Stem Cell Populations Give Rise to Disparate Brain Tumors in Response to N-MYC. Cancer Cell, 2012, 21, 601-613.	16.8	177
69	Impact of Craniospinal Dose, Boost Volume, and Neurologic Complications on Intellectual Outcome in Patients With Medulloblastoma. Journal of Clinical Oncology, 2014, 32, 1760-1768.	1.6	177
70	HDAC5 and HDAC9 in Medulloblastoma: Novel Markers for Risk Stratification and Role in Tumor Cell Growth. Clinical Cancer Research, 2010, 16, 3240-3252.	7.0	175
71	Familial Posterior Fossa Brain Tumors of Infancy Secondary to Germline Mutation of the hSNF5 Gene. American Journal of Human Genetics, 2000, 66, 1403-1406.	6.2	170
72	Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature, 2018, 553, 101-105.	27.8	170

#	Article	IF	CITATIONS
73	Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathologica, 2013, 125, 373-384.	7.7	169
74	Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathologica, 2017, 134, 705-714.	7.7	168
75	Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nature Genetics, 2014, 46, 39-44.	21.4	167
76	Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis. Journal of Clinical Oncology, 2016, 34, 2468-2477.	1.6	160
77	Medulloblastoma in the age of molecular subgroups: a review. Journal of Neurosurgery: Pediatrics, 2019, 24, 353-363.	1.3	153
78	Awake Craniotomy for Removal of Intracranial Tumor: Considerations for Early Discharge. Anesthesia and Analgesia, 2001, 92, 89-94.	2.2	149
79	Universal Poor Survival in Children With Medulloblastoma Harboring Somatic <i>TP53</i> Mutations. Journal of Clinical Oncology, 2010, 28, 1345-1350.	1.6	148
80	Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma. Cancer Cell, 2017, 32, 295-309.e12.	16.8	148
81	Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. Lancet Oncology, The, 2015, 16, 569-582.	10.7	147
82	Pleiotropic role for <i>MYCN</i> in medulloblastoma. Genes and Development, 2010, 24, 1059-1072.	5.9	146
83	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathologica, 2013, 126, 917-929.	7.7	146
84	Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene, 2004, 23, 3444-3453.	5.9	144
85	<i>FSTL5</i> Is a Marker of Poor Prognosis in Non-WNT/Non-SHH Medulloblastoma. Journal of Clinical Oncology, 2011, 29, 3852-3861.	1.6	143
86	Superior Intellectual Outcomes After Proton Radiotherapy Compared With Photon Radiotherapy for Pediatric Medulloblastoma. Journal of Clinical Oncology, 2020, 38, 454-461.	1.6	143
87	Molecular subgroups of medulloblastoma. Expert Review of Neurotherapeutics, 2012, 12, 871-884.	2.8	142
88	CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity. Acta Neuropathologica, 2014, 128, 291-303.	7.7	141
89	Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nature Medicine, 2020, 26, 720-731.	30.7	141
90	Stalled developmental programs at the root of pediatric brain tumors. Nature Genetics, 2019, 51, 1702-1713.	21.4	136

#	Article	IF	CITATIONS
91	DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathologica, 2013, 125, 359-371.	7.7	133
92	DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. Journal of Clinical Investigation, 2018, 129, 223-229.	8.2	130
93	Medulloblastoma: From Myth to Molecular. Journal of Clinical Oncology, 2017, 35, 2355-2363.	1.6	129
94	Recurrent noncoding U1ÂsnRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature, 2019, 574, 707-711.	27.8	129
95	The U1 spliceosomal RNA is recurrently mutated in multiple cancers. Nature, 2019, 574, 712-716.	27.8	128
96	Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathologica, 2014, 128, 137-149.	7.7	125
97	Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. Journal of Neurosurgery, 2000, 93, 437-448.	1.6	124
98	Molecular Insights into Pediatric Brain Tumors Have the Potential to Transform Therapy. Clinical Cancer Research, 2014, 20, 5630-5640.	7.0	124
99	Myocardial Fibrosis Burden Predicts Left Ventricular Ejection Fraction and Is Associated With Age and Steroid Treatment Duration in Duchenne Muscular Dystrophy. Journal of the American Heart Association, 2015, 4, .	3.7	114
100	Clinical and neuroanatomical predictors of cerebellar mutism syndrome. Neuro-Oncology, 2012, 14, 1294-1303.	1.2	112
101	Medulloblastoma subgroup-specific outcomes in irradiated children: who are the true high-risk patients?. Neuro-Oncology, 2016, 18, 291-297.	1.2	112
102	Spatial heterogeneity in medulloblastoma. Nature Genetics, 2017, 49, 780-788.	21.4	112
103	Survival Benefit for Pediatric Patients With Recurrent Ependymoma Treated With Reirradiation. International Journal of Radiation Oncology Biology Physics, 2012, 83, 1541-1548.	0.8	111
104	Molecular Insight into Medulloblastoma and Central Nervous System Primitive Neuroectodermal Tumor Biology from Hereditary Syndromes: A Review. Neurosurgery, 2000, 47, 888-901.	1.1	110
105	The G protein α subunit Gαs is a tumor suppressor in Sonic hedgehogâ^'driven medulloblastoma. Nature Medicine, 2014, 20, 1035-1042.	30.7	110
106	PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma. Cancer Research, 2016, 76, 4708-4719.	0.9	107
107	Genome-Wide Profiles of Extra-cranial Malignant Rhabdoid Tumors Reveal Heterogeneity and Dysregulated Developmental Pathways. Cancer Cell, 2016, 29, 394-406.	16.8	105
108	OTX2 Is Critical for the Maintenance and Progression of Shh-Independent Medulloblastomas. Cancer Research, 2010, 70, 181-191.	0.9	104

#	Article	IF	CITATIONS
109	Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling. Cancer Cell, 2018, 34, 379-395.e7.	16.8	104
110	Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget, 2014, 5, 2355-2371.	1.8	103
111	<i>TP53</i> Mutation Is Frequently Associated With <i>CTNNB1</i> Mutation or <i>MYCN</i> Amplification and Is Compatible With Long-Term Survival in Medulloblastoma. Journal of Clinical Oncology, 2010, 28, 5188-5196.	1.6	100
112	MicroRNA 218 Acts as a Tumor Suppressor by Targeting Multiple Cancer Phenotype-associated Genes in Medulloblastoma. Journal of Biological Chemistry, 2013, 288, 1918-1928.	3.4	100
113	Single-Cell Transcriptomics in Medulloblastoma Reveals Tumor-Initiating Progenitors and Oncogenic Cascades during Tumorigenesis and Relapse. Cancer Cell, 2019, 36, 302-318.e7.	16.8	96
114	An Epigenetic Genome-Wide Screen Identifies <i>SPINT2</i> as a Novel Tumor Suppressor Gene in Pediatric Medulloblastoma. Cancer Research, 2008, 68, 9945-9953.	0.9	95
115	Clinical, Pathological, and Molecular Characterization of Infant Medulloblastomas Treated with Sequential Highâ€Dose Chemotherapy. Pediatric Blood and Cancer, 2016, 63, 1527-1534.	1.5	94
116	The molecular landscape of ETMR at diagnosis and relapse. Nature, 2019, 576, 274-280.	27.8	94
117	Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell, 2020, 183, 1617-1633.e22.	28.9	93
118	MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin. Cancer Cell, 2015, 28, 715-729.	16.8	90
119	MR Imaging–Based Radiomic Signatures of Distinct Molecular Subgroups of Medulloblastoma. American Journal of Neuroradiology, 2019, 40, 154-161.	2.4	87
120	Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathologica, 2018, 136, 227-237.	7.7	86
121	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell, 2018, 172, 1050-1062.e14.	28.9	85
122	Molecular Characterization of Choroid Plexus Tumors Reveals Novel Clinically Relevant Subgroups. Clinical Cancer Research, 2015, 21, 184-192.	7.0	84
123	Molecular diagnostics of CNS embryonal tumors. Acta Neuropathologica, 2010, 120, 553-566.	7.7	83
124	Medulloblastoma subgroups remain stable across primary and metastatic compartments. Acta Neuropathologica, 2015, 129, 449-457.	7.7	80
125	Personalizing the Treatment of Pediatric Medulloblastoma: Polo-like Kinase 1 as a Molecular Target in High-Risk Children. Cancer Research, 2013, 73, 6734-6744.	0.9	79
126	Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell, 2020, 181, 1329-1345.e24.	28.9	79

#	Article	IF	CITATIONS
127	scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy. Nature Communications, 2019, 10, 5829.	12.8	77
128	An epigenetic gateway to brain tumor cell identity. Nature Neuroscience, 2016, 19, 10-19.	14.8	76
129	Therapeutic radiation for childhood cancer drives structural aberrations of NF2 in meningiomas. Nature Communications, 2017, 8, 186.	12.8	76
130	Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling. Oncogene, 2004, 23, 4577-4583.	5.9	75
131	EAC2 potassium channel with evolutionarily conserved function as a brain tumor target. Nature Neuroscience, 2015, 18, 1236-1246.	14.8	74
132	Significance of molecular classification of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogeneous group of tumors. Acta Neuropathologica Communications, 2018, 6, 134.	5.2	74
133	Identification and Analyses of Extra-Cranial and Cranial Rhabdoid Tumor Molecular Subgroups Reveal Tumors with Cytotoxic T Cell Infiltration. Cell Reports, 2019, 29, 2338-2354.e7.	6.4	74
134	The RAG-1/2 endonuclease causes genomic instability and controls CNS complications of lymphoblastic leukemia in p53/Prkdc-deficient mice. Cancer Cell, 2003, 3, 37-50.	16.8	73
135	The genetic and epigenetic basis of ependymoma. Child's Nervous System, 2009, 25, 1195-1201.	1.1	73
136	The RNA-Binding Protein Musashi1 Affects Medulloblastoma Growth via a Network of Cancer-Related Genes and Is an Indicator of Poor Prognosis. American Journal of Pathology, 2012, 181, 1762-1772.	3.8	73
137	Intellectual Outcome in Molecular Subgroups of Medulloblastoma. Journal of Clinical Oncology, 2016, 34, 4161-4170.	1.6	72
138	Targeting the enhancer of zeste homologue 2 in medulloblastoma. International Journal of Cancer, 2012, 131, 1800-1809.	5.1	71
139	Shh Signaling Protects Atoh1 from Degradation Mediated by the E3ÂUbiquitin Ligase Huwe1 in Neural Precursors. Developmental Cell, 2014, 29, 649-661.	7.0	71
140	The Genetics of Pediatric Brain Tumors. Current Neurology and Neuroscience Reports, 2010, 10, 215-223.	4.2	69
141	Genetic and Epigenetic Inactivation of Kruppel-like Factor 4 in Medulloblastoma. Neoplasia, 2010, 12, 20-27.	5.3	69
142	Rapid Diagnosis of Medulloblastoma Molecular Subgroups. Clinical Cancer Research, 2011, 17, 1883-1894.	7.0	69
143	Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells. BMC Cancer, 2012, 12, 80.	2.6	69
144	A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell, 2019, 36, 51-67.e7.	16.8	69

#	Article	IF	CITATIONS
145	Voltage-gated potassium channel EAG2 controls mitotic entry and tumor growth in medulloblastoma via regulating cell volume dynamics. Genes and Development, 2012, 26, 1780-1796.	5.9	68
146	Hypermutation of the Inactive X Chromosome Is a Frequent Event in Cancer. Cell, 2013, 155, 567-581.	28.9	67
147	Application of a Neural Network Whole Transcriptome–Based Pan-Cancer Method for Diagnosis of Primary and Metastatic Cancers. JAMA Network Open, 2019, 2, e192597.	5.9	67
148	Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathologica, 2012, 123, 515-527.	7.7	66
149	Use of ifosfamide, carboplatin, and etoposide chemotherapy in choroid plexus carcinoma. Journal of Neurosurgery: Pediatrics, 2010, 5, 615-621.	1.3	65
150	Posterior fossa tumors in children: developmental anatomy and diagnostic imaging. Child's Nervous System, 2015, 31, 1661-1676.	1.1	63
151	Role of LIM and SH3 Protein 1 (LASP1) in the Metastatic Dissemination of Medulloblastoma. Cancer Research, 2010, 70, 8003-8014.	0.9	62
152	<i>Sleeping Beauty</i> mutagenesis in a mouse medulloblastoma model defines networks that discriminate between human molecular subgroups. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4325-34.	7.1	62
153	Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma. Molecular Cancer, 2014, 13, 72.	19.2	62
154	Outcomes of BRAF V600E Pediatric Gliomas Treated With Targeted BRAF Inhibition. JCO Precision Oncology, 2020, 4, 561-571.	3.0	62
155	Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget, 2016, 7, 28169-28182.	1.8	62
156	MicroRNA-182 promotes leptomeningeal spread of non-sonic hedgehog-medulloblastoma. Acta Neuropathologica, 2012, 123, 529-538.	7.7	60
157	Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Science Signaling, 2018, 11, .	3.6	59
158	CXCR4 Activation Defines a New Subgroup of Sonic Hedgehog–Driven Medulloblastoma. Cancer Research, 2012, 72, 122-132.	0.9	58
159	FBW7 suppression leads to SOX9 stabilization and increased malignancy in medulloblastoma. EMBO Journal, 2016, 35, 2192-2212.	7.8	58
160	BRAF alteration status and the histone H3F3A gene K27M mutation segregate spinal cord astrocytoma histology. Acta Neuropathologica, 2016, 131, 147-150.	7.7	57
161	Monoallelic Expression Determines Oncogenic Progression and Outcome in Benign and Malignant Brain Tumors. Cancer Research, 2012, 72, 636-644.	0.9	56
162	Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell, 2019, 25, 433-446.e7.	11.1	56

#	Article	IF	CITATIONS
163	ATM Regulates 3-Methylpurine-DNA Glycosylase and Promotes Therapeutic Resistance to Alkylating Agents. Cancer Discovery, 2014, 4, 1198-1213.	9.4	55
164	Poly-ADP-Ribose Polymerase as a Therapeutic Target in Pediatric Diffuse Intrinsic Pontine Glioma and Pediatric High-Grade Astrocytoma. Molecular Cancer Therapeutics, 2015, 14, 2560-2568.	4.1	55
165	Silencing of Thrombospondin-1 Is Critical for Myc-Induced Metastatic Phenotypes in Medulloblastoma. Cancer Research, 2010, 70, 8199-8210.	0.9	54
166	Medulloblastoma molecular dissection. Current Opinion in Oncology, 2013, 25, 674-681.	2.4	54
167	FoxG1 Interacts with Bmi1 to Regulate Self-Renewal and Tumorigenicity of Medulloblastoma Stem Cells, 2013, 31, 1266-1277.	3.2	53
168	The role of angiogenesis in Group 3 medulloblastoma pathogenesis and survival. Neuro-Oncology, 2017, 19, 1217-1227.	1.2	53
169	Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nature Medicine, 2022, 28, 125-135.	30.7	53
170	Targeting Sonic Hedgehog-Associated Medulloblastoma through Inhibition of Aurora and Polo-like Kinases. Cancer Research, 2013, 73, 6310-6322.	0.9	52
171	High-resolution structural genomics reveals new therapeutic vulnerabilities in glioblastoma. Genome Research, 2019, 29, 1211-1222.	5.5	52
172	Molecular pathogenesis of childhood brain tumors. Journal of Neuro-Oncology, 2004, 70, 203-215.	2.9	51
173	Genetic and molecular alterations across medulloblastoma subgroups. Journal of Molecular Medicine, 2015, 93, 1075-1084.	3.9	51
174	Foretinib Is Effective Therapy for Metastatic Sonic Hedgehog Medulloblastoma. Cancer Research, 2015, 75, 134-146.	0.9	51
175	The Transition from Quiescent to Activated States in Human Hematopoietic Stem Cells Is Governed by Dynamic 3D Genome Reorganization. Cell Stem Cell, 2021, 28, 488-501.e10.	11.1	51
176	FISH and chips: the recipe for improved prognostication and outcomes for children with medulloblastoma. Cancer Genetics, 2011, 204, 577-588.	0.4	50
177	Basal Suppression of the Sonic Hedgehog Pathway by the G-Protein-Coupled Receptor Gpr161 Restricts Medulloblastoma Pathogenesis. Cell Reports, 2018, 22, 1169-1184.	6.4	49
178	Survival and functional outcomes of molecularly defined childhood posterior fossa ependymoma: Cure at a cost. Cancer, 2019, 125, 1867-1876.	4.1	49
179	Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years. Neurosurgical Focus, 2010, 28, E6.	2.3	48
180	Clinical implications of medulloblastoma subgroups: incidence of CSF diversion surgery. Journal of Neurosurgery: Pediatrics, 2015, 15, 236-242.	1.3	48

#	Article	IF	CITATIONS
181	DDX3X Suppresses the Susceptibility of Hindbrain Lineages to Medulloblastoma. Developmental Cell, 2020, 54, 455-470.e5.	7.0	47
182	The transcriptional landscape of Shh medulloblastoma. Nature Communications, 2021, 12, 1749.	12.8	47
183	Alternative lengthening of telomeres is enriched in, and impacts survival of TP53 mutant pediatric malignant brain tumors. Acta Neuropathologica, 2014, 128, 853-862.	7.7	46
184	Preclinical target validation using patient-derived cells. Nature Reviews Drug Discovery, 2015, 14, 149-150.	46.4	46
185	H3 K27M mutations are extremely rare in posterior fossa group A ependymoma. Child's Nervous System, 2017, 33, 1047-1051.	1.1	46
186	Ultra high-risk PFA ependymoma is characterized by loss of chromosome 6q. Neuro-Oncology, 2021, 23, 1360-1370.	1.2	46
187	DNA Polymerase and Mismatch Repair Exert Distinct Microsatellite Instability Signatures in Normal and Malignant Human Cells. Cancer Discovery, 2021, 11, 1176-1191.	9.4	46
188	Pyruvate Kinase Inhibits Proliferation during Postnatal Cerebellar Neurogenesis and Suppresses Medulloblastoma Formation. Cancer Research, 2017, 77, 3217-3230.	0.9	45
189	Single-cell chromatin accessibility profiling of glioblastoma identifies an invasive cancer stem cell population associated with lower survival. ELife, 2021, 10, .	6.0	45
190	Neurosurgical management of extraaxial central nervous system infections in children. Journal of Neurosurgery: Pediatrics, 2011, 7, 441-451.	1.3	44
191	Functional Genomics Identifies Drivers of Medulloblastoma Dissemination. Cancer Research, 2012, 72, 4944-4953.	0.9	44
192	The Shh Receptor Boc Promotes Progression of Early Medulloblastoma to Advanced Tumors. Developmental Cell, 2014, 31, 34-47.	7.0	43
193	The clinical importance of medulloblastoma extent of resection: a systematic review. Journal of Neuro-Oncology, 2018, 139, 523-539.	2.9	43
194	Duration of the preâ€diagnostic interval in medulloblastoma is subgroup dependent. Pediatric Blood and Cancer, 2014, 61, 1190-1194.	1.5	42
195	Rapid determination of medulloblastoma subgroup affiliation with mass spectrometry using a handheld picosecond infrared laser desorption probe. Chemical Science, 2017, 8, 6508-6519.	7.4	42
196	Treatment developments and the unfolding of the quality of life discussion in childhood medulloblastoma: a review. Child's Nervous System, 2014, 30, 979-990.	1.1	41
197	Expression of MAGE and GAGE genes in medulloblastoma and modulation of resistance to chemotherapy. Journal of Neurosurgery: Pediatrics, 2008, 1, 305-313.	1.3	40
198	Nestin Expression Identifies Ependymoma Patients with Poor Outcome. Brain Pathology, 2012, 22, 848-860.	4.1	40

#	Article	IF	CITATIONS
199	Spinal Myxopapillary Ependymomas Demonstrate a Warburg Phenotype. Clinical Cancer Research, 2015, 21, 3750-3758.	7.0	40
200	Subgroup-specific prognostic signaling and metabolic pathways in pediatric medulloblastoma. BMC Cancer, 2019, 19, 571.	2.6	40
201	H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone. Cancer Discovery, 2020, 10, 1968-1987.	9.4	40
202	Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. Journal of Clinical Oncology, 2021, 39, 807-821.	1.6	40
203	Overcoming resistance to sonic hedgehog inhibition by targeting p90 ribosomal S6 kinase in pediatric medulloblastoma. Pediatric Blood and Cancer, 2014, 61, 107-115.	1.5	39
204	Executive function in paediatric medulloblastoma: The role of cerebrocerebellar connections. Journal of Neuropsychology, 2017, 11, 174-200.	1.4	39
205	Differential patterns of metastatic dissemination across medulloblastoma subgroups. Journal of Neurosurgery: Pediatrics, 2018, 21, 145-152.	1.3	39
206	ID1 Is Critical for Tumorigenesis and Regulates Chemoresistance in Glioblastoma. Cancer Research, 2019, 79, 4057-4071.	0.9	39
207	Dual Regulatory Functions of SUFU and Targetome of GLI2 in SHH Subgroup Medulloblastoma. Developmental Cell, 2019, 48, 167-183.e5.	7.0	39
208	Clinical impact of combined epigenetic and molecular analysis of pediatric low-grade gliomas. Neuro-Oncology, 2020, 22, 1474-1483.	1.2	39
209	The Epigenetics of Brain Tumors. Methods in Molecular Biology, 2012, 863, 139-153.	0.9	38
210	Deconstruction of Medulloblastoma Cellular Heterogeneity Reveals Differences between the Most Highly Invasive and Self-Renewing Phenotypes. Neoplasia, 2013, 15, 384-IN8.	5.3	38
211	Review of molecular classification and treatment implications of pediatric brain tumors. Current Opinion in Pediatrics, 2018, 30, 3-9.	2.0	38
212	Poliovirus Receptor (CD155) Expression in Pediatric Brain Tumors Mediates Oncolysis of Medulloblastoma and Pleomorphic Xanthoastrocytoma. Journal of Neuropathology and Experimental Neurology, 2018, 77, 696-702.	1.7	38
213	Mouse models of medulloblastoma. Chinese Journal of Cancer, 2011, 30, 442-449.	4.9	38
214	Tuberous Sclerosis Complex Suppression in Cerebellar Development and Medulloblastoma: Separate Regulation of Mammalian Target of Rapamycin Activity and p27Kip1 Localization. Cancer Research, 2009, 69, 7224-7234.	0.9	37
215	WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. Acta Neuropathologica Communications, 2014, 2, 174.	5.2	37
216	Molecular genetics of ependymoma. Chinese Journal of Cancer, 2011, 30, 669-681.	4.9	37

#	Article	IF	CITATIONS
217	Medulloblastoma in a Child with Rubenstein-Taybi Syndrome: Case Report and Review of the Literature. Pediatric Neurosurgery, 2001, 35, 235-238.	0.7	36
218	Transcriptional profiling of medulloblastoma in children. Journal of Neurosurgery, 2003, 99, 534-541.	1.6	36
219	ABC transporter activity linked to radiation resistance and molecular subtype in pediatric medulloblastoma. Experimental Hematology and Oncology, 2013, 2, 26.	5.0	36
220	Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma. Nature Communications, 2018, 9, 4121.	12.8	36
221	A homing system targets therapeutic T cells to brain cancer. Nature, 2018, 561, 331-337.	27.8	36
222	Gene-expression profiling elucidates molecular signaling networks that can be therapeutically targeted in vestibular schwannoma. Journal of Neurosurgery, 2014, 121, 1434-1445.	1.6	35
223	Evasion of Cell Senescence Leads to Medulloblastoma Progression. Cell Reports, 2016, 14, 2925-2937.	6.4	35
224	Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma. Developmental Cell, 2018, 44, 709-724.e6.	7.0	35
225	Proteomic analysis of Medulloblastoma reveals functional biology with translational potential. Acta Neuropathologica Communications, 2018, 6, 48.	5.2	35
226	Medulloblastoma Arises from the Persistence of a Rare and Transient Sox2+ Granule Neuron Precursor. Cell Reports, 2020, 31, 107511.	6.4	35
227	Telomerase inhibition abolishes the tumorigenicity of pediatric ependymoma tumor-initiating cells. Acta Neuropathologica, 2014, 128, 863-877.	7.7	34
228	Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3392-3397.	7.1	34
229	Subgroup and subtype-specific outcomes in adult medulloblastoma. Acta Neuropathologica, 2021, 142, 859-871.	7.7	34
230	Genome-Wide DNA Methylation Analysis Reveals Epigenetic Dysregulation of MicroRNA-34A in <i>TP53</i> -Associated Cancer Susceptibility. Journal of Clinical Oncology, 2016, 34, 3697-3704.	1.6	33
231	TGF-β Determines the Pro-migratory Potential of bFGF Signaling in Medulloblastoma. Cell Reports, 2018, 23, 3798-3812.e8.	6.4	33
232	<i>Sleeping Beauty</i> Insertional Mutagenesis Reveals Important Genetic Drivers of Central Nervous System Embryonal Tumors. Cancer Research, 2019, 79, 905-917.	0.9	33
233	Craniospinal irradiation as part of re-irradiation for children with recurrent intracranial ependymoma. Neuro-Oncology, 2019, 21, 547-557.	1.2	32
234	MAP4K4 controlled integrin \hat{I}^21 activation and c-Met endocytosis are associated with invasive behavior of medulloblastoma cells. Oncotarget, 2018, 9, 23220-23236.	1.8	32

#	Article	IF	CITATIONS
235	Convergence of BMI1 and CHD7 on ERK Signaling in Medulloblastoma. Cell Reports, 2017, 21, 2772-2784.	6.4	31
236	CD271+ Cells Are Diagnostic and Prognostic and Exhibit Elevated MAPK Activity in SHH Medulloblastoma. Cancer Research, 2018, 78, 4745-4759.	0.9	31
237	Picosecond Infrared Laser Desorption Mass Spectrometry Identifies Medulloblastoma Subgroups on Intrasurgical Timescales. Cancer Research, 2019, 79, 2426-2434.	0.9	31
238	Deep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional Study. American Journal of Neuroradiology, 2020, 41, 1718-1725.	2.4	31
239	Normal and oncogenic roles for microRNAs in the developing brain. Cell Cycle, 2009, 8, 4049-4054.	2.6	30
240	<i>Notch1</i> -Induced Brain Tumor Models the Sonic Hedgehog Subgroup of Human Medulloblastoma. Cancer Research, 2013, 73, 5381-5390.	0.9	29
241	Polycomb group gene BMI1 controls invasion of medulloblastoma cells and inhibits BMP-regulated cell adhesion. Acta Neuropathologica Communications, 2014, 2, 10.	5.2	29
242	Posterior fossa ependymoma: current insights. Child's Nervous System, 2015, 31, 1699-1706.	1.1	29
243	p53 and Medulloblastoma. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026278.	6.2	29
244	Leptomeningeal dissemination: a sinister pattern of medulloblastoma growth. Journal of Neurosurgery: Pediatrics, 2019, 23, 613-621.	1.3	29
245	Incorporation of C-1 lateral mass screws in occipitocervical and atlantoaxial fusions for children 8 years of age or younger. Journal of Neurosurgery: Pediatrics, 2007, 107, 178-183.	1.3	28
246	Posterior fossa ependymomas: new radiological classification with surgical correlation. Child's Nervous System, 2010, 26, 1765-1772.	1.1	28
247	Subgroup-specific alternative splicing in medulloblastoma. Acta Neuropathologica, 2012, 123, 485-499.	7.7	28
248	Intratumoral Genetic and Functional Heterogeneity in Pediatric Glioblastoma. Cancer Research, 2019, 79, 2111-2123.	0.9	28
249	Emergence and maintenance of actionable genetic drivers at medulloblastoma relapse. Neuro-Oncology, 2022, 24, 153-165.	1.2	28
250	Retrospective family study of childhood medulloblastoma. American Journal of Medical Genetics, Part A, 2005, 134A, 399-403.	1.2	27
251	Genetic drivers of metastatic dissemination in sonic hedgehog medulloblastoma. Acta Neuropathologica Communications, 2014, 2, 85.	5.2	27
252	Neoadjuvant chemotherapy reduces blood loss during the resection of pediatric choroid plexus carcinomas. Journal of Neurosurgery: Pediatrics, 2015, 16, 126-133.	1.3	27

#	Article	IF	CITATIONS
253	MRI Characteristics of Primary Tumors and Metastatic Lesions in Molecular Subgroups of Pediatric Medulloblastoma: A Single-Center Study. American Journal of Neuroradiology, 2018, 39, 949-955.	2.4	27
254	Canonical <scp>TGF</scp> â€Î² Pathway Activity Is a Predictor of <scp>SHH</scp> â€Driven Medulloblastoma Survival and Delineates Putative Precursors in Cerebellar Development. Brain Pathology, 2013, 23, 178-191.	4.1	26
255	Neogenin1 is a sonic hedgehog target in medulloblastoma and is necessary for cell cycle progression. International Journal of Cancer, 2014, 134, 21-31.	5.1	26
256	Reproducibility of the NanoString 22â€gene molecular subgroup assay for improved prognostic prediction of medulloblastoma. Neuropathology, 2018, 38, 475-483.	1.2	26
257	Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma. Oncotarget, 2015, 6, 21718-21729.	1.8	26
258	Multiple CDK/CYCLIND genes are amplified in medulloblastoma and supratentorial primitive neuroectodermal brain tumor. Cancer Genetics, 2012, 205, 220-231.	0.4	25
259	An epigenetic therapy for diffuse intrinsic pontine gliomas. Nature Medicine, 2014, 20, 1378-1379.	30.7	25
260	Vulnerability of white matter to insult during childhood: evidence from patients treated for medulloblastoma. Journal of Neurosurgery: Pediatrics, 2016, 18, 29-40.	1.3	25
261	The molecular biology of medulloblastoma metastasis. Brain Pathology, 2020, 30, 691-702.	4.1	25
262	Neurotrophin Signaling in Medulloblastoma. Cancers, 2020, 12, 2542.	3.7	25
263	The hPMS2 exon 5 mutation and malignant glioma. Journal of Neurosurgery, 1999, 90, 946-950.	1.6	24
264	SnapShot: Medulloblastoma. Cancer Cell, 2014, 26, 940-940.e1.	16.8	24
265	Tailoring Medulloblastoma Treatment Through Genomics: Making a Change, One Subgroup at a Time. Annual Review of Genomics and Human Genetics, 2017, 18, 143-166.	6.2	24
266	A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma. Clinical Cancer Research, 2018, 24, 1355-1363.	7.0	24
267	Chloride intracellular channel 1 cooperates with potassium channel EAG2 to promote medulloblastoma growth. Journal of Experimental Medicine, 2020, 217, .	8.5	24
268	Pattern of Relapse and Treatment Response in WNT-Activated Medulloblastoma. Cell Reports Medicine, 2020, 1, 100038.	6.5	24
269	A microRNA-1280/JAC2 network comprises a novel biological target in high-risk medulloblastoma. Oncotarget, 2015, 6, 2709-2724.	1.8	24
270	The biology of ependymomas andÂemerging novel therapies. Nature Reviews Cancer, 2022, 22, 208-222.	28.4	24

#	Article	IF	CITATIONS
271	MPS1 kinase as a potential therapeutic target in medulloblastoma. Oncology Reports, 2016, 36, 2633-2640.	2.6	23
272	Mechanism of action and therapeutic efficacy of Aurora kinase B inhibition in MYC overexpressing medulloblastoma. Oncotarget, 2015, 6, 3359-3374.	1.8	23
273	G-protein coupled receptor expression patterns delineate medulloblastoma subgroups. Acta Neuropathologica Communications, 2013, 1, 66.	5.2	22
274	Visualization and segmentation of reciprocal cerebrocerebellar pathways in the healthy and injured brain. Human Brain Mapping, 2015, 36, 2615-2628.	3.6	22
275	Metastatic group 3 medulloblastoma is driven by PRUNE1 targeting NME1–TGF-β–OTX2–SNAIL via PTEN inhibition. Brain, 2018, 141, 1300-1319.	7.6	22
276	The AHR pathway represses TGFÎ ² -SMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. Scientific Reports, 2020, 10, 148.	3.3	22
277	Characterization of novel biomarkers in selecting for subtype specific medulloblastoma phenotypes. Oncotarget, 2015, 6, 38881-38900.	1.8	22
278	Medulloblastoma in the Molecular Era. Journal of Korean Neurosurgical Society, 2018, 61, 292-301.	1.2	22
279	PCDH10 is a candidate tumour suppressor gene in medulloblastoma. Child's Nervous System, 2011, 27, 1243-1249.	1.1	21
280	WIP1 Enhances Tumor Formation in a Sonic Hedgehog–Dependent Model of Medulloblastoma. Neurosurgery, 2012, 70, 1003-1010.	1.1	21
281	Emerging Insights into the Ependymoma Epigenome. Brain Pathology, 2013, 23, 206-209.	4.1	21
282	MyoD Is a Tumor Suppressor Gene in Medulloblastoma. Cancer Research, 2013, 73, 6828-6837.	0.9	21
283	Sleeping Beauty Mouse Models Identify Candidate Genes Involved in Gliomagenesis. PLoS ONE, 2014, 9, e113489.	2.5	21
284	Deâ€escalation of therapy for pediatric medulloblastoma: Tradeâ€offs between quality of life and survival. Pediatric Blood and Cancer, 2014, 61, 1300-1304.	1.5	21
285	Treatment implications of posterior fossa ependymoma subgroups. Chinese Journal of Cancer, 2016, 35, 93.	4.9	21
286	Put away your microscopes: the ependymoma molecular era has begun. Current Opinion in Oncology, 2017, 29, 443-447.	2.4	21
287	Molecular correlates of cerebellar mutism syndrome in medulloblastoma. Neuro-Oncology, 2020, 22, 290-297.	1.2	21
288	PPAR and GST polymorphisms may predict changes in intellectual functioning in medulloblastoma survivors. Journal of Neuro-Oncology, 2019, 142, 39-48.	2.9	21

#	Article	IF	CITATIONS
289	An OTX2-PAX3 signaling axis regulates Group 3 medulloblastoma cell fate. Nature Communications, 2020, 11, 3627.	12.8	21
290	HDAC and MAPK/ERK Inhibitors Cooperate To Reduce Viability and Stemness in Medulloblastoma. Journal of Molecular Neuroscience, 2020, 70, 981-992.	2.3	21
291	Modeling germline mutations in pineoblastoma uncovers lysosome disruption-based therapy. Nature Communications, 2020, 11, 1825.	12.8	21
292	Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. ELife, 2016, 5, .	6.0	21
293	Epigenetic States of Cells of Origin and Tumor Evolution Drive Tumor-Initiating Cell Phenotype and Tumor Heterogeneity. Cancer Research, 2014, 74, 4864-4874.	0.9	20
294	BMI1 is a therapeutic target in recurrent medulloblastoma. Oncogene, 2019, 38, 1702-1716.	5.9	20
295	Infusion of 5-Azacytidine (5-AZA) into the fourth ventricle or resection cavity in children with recurrent posterior Fossa Ependymoma: a pilot clinical trial. Journal of Neuro-Oncology, 2019, 141, 449-457.	2.9	20
296	Proteomic profiling of high risk medulloblastoma reveals functional biology. Oncotarget, 2015, 6, 14584-14595.	1.8	20
297	Matching mice to malignancy: molecular subgroups and models of medulloblastoma. Child's Nervous System, 2012, 28, 521-532.	1.1	19
298	Upregulation of the chromatin remodeler HELLS is mediated by YAP1 in Sonic Hedgehog Medulloblastoma. Scientific Reports, 2019, 9, 13611.	3.3	19
299	Immunohistochemical and nanoString-Based Subgrouping of Clinical Medulloblastoma Samples. Journal of Neuropathology and Experimental Neurology, 2020, 79, 437-447.	1.7	19
300	Mutations in the RAS/MAPK Pathway Drive Replication Repair–Deficient Hypermutated Tumors and Confer Sensitivity to MEK Inhibition. Cancer Discovery, 2021, 11, 1454-1467.	9.4	19
301	Spatial concordance of DNA methylation classification in diffuse glioma. Neuro-Oncology, 2021, 23, 2054-2065.	1.2	19
302	Molecular genetics of pineal region neoplasms. Journal of Neuro-Oncology, 2001, 54, 219-238.	2.9	18
303	Re-irradiation for children with recurrent medulloblastoma in Toronto, Canada: a 20-year experience. Journal of Neuro-Oncology, 2019, 145, 107-114.	2.9	18
304	Modulating native GABAA receptors in medulloblastoma with positive allosteric benzodiazepine-derivatives induces cell death. Journal of Neuro-Oncology, 2019, 142, 411-422.	2.9	18
305	MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties. BMC Cancer, 2016, 16, 115.	2.6	17
306	Integrated analysis of proteome, phosphotyrosineâ€proteome, tyrosineâ€kinome, and tyrosineâ€phosphatome in acute myeloid leukemia. Proteomics, 2017, 17, 1600361.	2.2	17

#	Article	IF	CITATIONS
307	Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus. Journal of Neurosurgery: Pediatrics, 2021, 27, 131-138.	1.3	17
308	Checkpoint kinase 1 expression is an adverse prognostic marker and therapeutic target in MYC-driven medulloblastoma. Oncotarget, 2016, 7, 53881-53894.	1.8	17
309	Genetics of choroid plexus tumors. Neurosurgical Focus, 2006, 20, 1-3.	2.3	16
310	Dose-level response rates of mTOR inhibition in tuberous sclerosis complex related subependymal giant cell astrocytoma. Pediatric Blood and Cancer, 2015, 62, 1754-1760.	1.5	16
311	Prognostic relevance of miRâ€124â€3p and its target <i>TP53INP1</i> in pediatric ependymoma. Genes Chromosomes and Cancer, 2017, 56, 639-650.	2.8	16
312	Characterization of a novel <scp>OTX</scp> 2â€driven stem cell program in Group 3 and Group 4 medulloblastoma. Molecular Oncology, 2018, 12, 495-513.	4.6	16
313	European genetic ancestry associated with risk of childhood ependymoma. Neuro-Oncology, 2020, 22, 1637-1646.	1.2	16
314	The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors. Nature Communications, 2022, 13, .	12.8	16
315	Cip/Kip cell-cycle inhibitors: a neuro-oncological perspective. Journal of Neuro-Oncology, 2001, 51, 205-218.	2.9	15
316	THE HISTORY OF NEUROSURGERY AT THE HOSPITAL FOR SICK CHILDREN IN TORONTO. Neurosurgery, 2007, 61, 612-625.	1.1	15
317	Intracerebral malignant peripheral nerve sheath tumor in a child with neurofibromatosis Type 1 and middle cerebral artery aneurysm treated with endovascular coil embolization. Journal of Neurosurgery: Pediatrics, 2011, 8, 346-352.	1.3	15
318	<i>Bmi1</i> overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation. DMM Disease Models and Mechanisms, 2013, 6, 49-63.	2.4	15
319	5-Hydroxymethylcytosine preferentially targets genes upregulated in isocitrate dehydrogenase 1 mutant high-grade glioma. Acta Neuropathologica, 2018, 135, 617-634.	7.7	15
320	miR miR on the wall, who's the most malignant medulloblastoma miR of them all?. Neuro-Oncology, 2018, 20, 313-323.	1.2	15
321	Antitumor Activities and Cellular Changes Induced by TrkB Inhibition in Medulloblastoma. Frontiers in Pharmacology, 2019, 10, 698.	3.5	15
322	Myc and Loss of p53 Cooperate to Drive Formation of Choroid Plexus Carcinoma. Cancer Research, 2019, 79, 2208-2219.	0.9	15
323	Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma. Acta Neuropathologica Communications, 2020, 8, 173.	5.2	15
324	Intertumoral and Intratumoral Heterogeneity as a Barrier for Effective Treatment of Medulloblastoma. Neurosurgery, 2013, 60, 57-63.	1.1	13

#	Article	IF	CITATIONS
325	Measuring the optical characteristics of medulloblastoma with optical coherence tomography. Biomedical Optics Express, 2015, 6, 1487.	2.9	13
326	An autocrine ActivinB mechanism drives <scp>TGF</scp> β/Activin signaling in Group 3 medulloblastoma. EMBO Molecular Medicine, 2019, 11, e9830.	6.9	13
327	Left Ventricular Magnetic Resonance Imaging Strain Predicts the Onset of Duchenne Muscular Dystrophy–Associated Cardiomyopathy. Circulation: Cardiovascular Imaging, 2020, 13, e011526.	2.6	13
328	Somatostatin receptor subtype 2 (sst2) is a potential prognostic marker and a therapeutic target in medulloblastoma. Child's Nervous System, 2013, 29, 1253-1262.	1.1	12
329	Clinical phenotypes and prognostic features of embryonal tumours with multi-layered rosettes: a Rare Brain Tumor Registry study. The Lancet Child and Adolescent Health, 2021, 5, 800-813.	5.6	12
330	A clinically compatible drugâ€screening platform based on organotypic cultures identifies vulnerabilities to prevent and treat brain metastasis. EMBO Molecular Medicine, 2022, 14, e14552.	6.9	12
331	The Amazing and Deadly Glioma Race. Cancer Cell, 2015, 28, 275-277.	16.8	11
332	Successful treatment of primary intracranial sarcoma with the ICE chemotherapy regimen and focal radiation in children. Journal of Neurosurgery: Pediatrics, 2016, 17, 298-302.	1.3	11
333	Medulloblastoma has a global impact on health related quality of life: Findings from an international cohort. Cancer Medicine, 2020, 9, 447-459.	2.8	11
334	Expression of GNAS, TP53, and PTEN Improves the Patient Prognostication in Sonic Hedgehog (SHH) Medulloblastoma Subgroup. Journal of Molecular Diagnostics, 2020, 22, 957-966.	2.8	11
335	Dual role of allele-specific DNA hypermethylation within the TERT promoter in cancer. Journal of Clinical Investigation, 2021, 131, .	8.2	11
336	A functional genomics approach to identify pathways of drug resistance in medulloblastoma. Acta Neuropathologica Communications, 2018, 6, 146.	5.2	10
337	p53 Function Is Compromised by Inhibitor 2 of Phosphatase 2A in Sonic Hedgehog Medulloblastoma. Molecular Cancer Research, 2019, 17, 186-198.	3.4	10
338	Systems pharmacogenomics identifies novel targets and clinically actionable therapeutics for medulloblastoma. Genome Medicine, 2021, 13, 103.	8.2	10
339	Detection of Active Coronary Arterial Vasculitis Using Magnetic Resonance Imaging in Kawasaki Disease. Circulation, 2005, 112, .	1.6	9
340	Fall of the Optical Wall: Freedom from the Tyranny of the Microscope Improves Glioma Risk Stratification. Cancer Cell, 2016, 29, 137-138.	16.8	9
341	Early Lethality Due to a Novel Desmoplakin Variant Causing Infantile Epidermolysis Bullosa Simplex With Fragile Skin, Aplasia Cutis Congenita, and Arrhythmogenic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2020, 13, e002800.	3.6	9
342	Myocardial Parametric Mapping by Cardiac Magnetic Resonance Imaging in Pediatric Cardiology and Congenital Heart Disease. Circulation: Cardiovascular Imaging, 2022, 15, CIRCIMAGING120012242.	2.6	9

#	Article	IF	CITATIONS
343	Incidence of metastatic disease and survival among patients with newly diagnosed primary CNS tumors in the United States from 2004-2013. Journal of Cancer, 2019, 10, 3037-3045.	2.5	8
344	Single allele loss-of-function mutations select and sculpt conditional cooperative networks in breast cancer. Nature Communications, 2021, 12, 5238.	12.8	8
345	Clinically Tractable Outcome Prediction of Non-WNT/Non-SHH Medulloblastoma Based on TPD52 IHC in a Multicohort Study. Clinical Cancer Research, 2022, 28, 116-128.	7.0	8
346	Radiomic signatures of posterior fossa ependymoma: Molecular subgroups and risk profiles. Neuro-Oncology, 2022, 24, 986-994.	1.2	8
347	Calculating a cure for cancer: managing medulloblastoma MATH1-ematically. Expert Review of Neurotherapeutics, 2010, 10, 1489-1492.	2.8	7
348	Advances in Genomics Explain Medulloblastoma Behavior at the Bedside. Neurosurgery, 2017, 64, 21-26.	1.1	7
349	Perspectives in pediatric neurosurgery. Child's Nervous System, 2000, 16, 809-820.	1.1	6
350	Pathological Findings of a Subependymal Giant Cell Astrocytoma Following Treatment With Rapamycin. Pediatric Neurology, 2015, 53, 238-242.e1.	2.1	6
351	Eye Movements and White Matter are Associated with Emotional Control in Children Treated for Brain Tumors. Journal of the International Neuropsychological Society, 2020, 26, 978-992.	1.8	6
352	Abstract 4347: Medulloblastoma comprises four distinct diseases. , 2010, , .		6
353	Bioinformatics in Neurosurgery. Neurosurgery, 2003, 52, 723-731.	1.1	5
354	Anaplastic medulloblastoma in a child with Duchenne muscular dystrophy. Journal of Neurosurgery: Pediatrics, 2012, 10, 21-24.	1.3	5
355	Identification of CD24 as a marker of Patched1 deleted medulloblastoma-initiating neural progenitor cells. PLoS ONE, 2019, 14, e0210665.	2.5	5
356	GLI3Âls Associated With Neuronal Differentiation in SHH-Activated and WNT-Activated Medulloblastoma. Journal of Neuropathology and Experimental Neurology, 2021, 80, 129-136.	1.7	5
357	Modeling human brain tumors in flies, worms, and zebrafish: From proof of principle to novel therapeutic targets. Neuro-Oncology, 2021, 23, 718-731.	1.2	5
358	Re-evaluating surgery and re-irradiation for locally recurrent pediatric ependymoma – a multi-institutional study. Neuro-Oncology Advances, 2021, 3, vdab158.	0.7	5
359	Drain the swamp to beat glioma. Nature, 2017, 549, 460-461.	27.8	4
360	Bioinformatic Strategies for the Genomic and Epigenomic Characterization of Brain Tumors. Methods in Molecular Biology, 2019, 1869, 37-56.	0.9	4

#	Article	IF	CITATIONS
361	Embryonal Brain Tumors. , 2015, , 127-138.		4
362	Pediatric cancer genomics, a play rather than a portrait. Nature Genetics, 2015, 47, 851-852.	21.4	3
363	CAR T cells for childhood diffuse midline gliomas. Nature Medicine, 2018, 24, 534-535.	30.7	3
364	Postoperative isolated lower extremity supplementary motor area syndrome: case report and review of the literature. Child's Nervous System, 2020, 36, 189-195.	1.1	3
365	Abstract 636: PROFYLE: The pan-Canadian precision oncology program for children, adolescents and young adults with hard-to-treat cancer. , 2021, , .		3
366	Advanced Cancer Genetics in Neurosurgical Research. Neurosurgery, 2003, 53, 1168-1178.	1.1	2
367	Reply to J.C. Lindsey et al. Journal of Clinical Oncology, 2011, 29, e348-e349.	1.6	2
368	Reply to J.C. Lindsey et al. Journal of Clinical Oncology, 2011, 29, e347-e347.	1.6	2
369	Genome-Wide Methylation Analysis. Methods in Molecular Biology, 2012, 863, 303-317.	0.9	2
370	Nailing a Fe-rocious form of cancer. Science, 2020, 369, 250-251.	12.6	2
371	Radiation-induced intracranial aneurysm presenting with acute hemorrhage in a child treated for medulloblastoma. Child's Nervous System, 2021, 37, 1387-1389.	1.1	2
372	Activated leukocyte cell adhesion molecule expression correlates with the WNT subgroup in medulloblastoma and is involved in regulating tumor cell proliferation and invasion. PLoS ONE, 2020, 15, e0243272.	2.5	2
373	ICGC PedBrain - dissecting the genomic complexity underlying medulloblastoma using whole-genome sequencing. BMC Proceedings, 2012, 6, .	1.6	1
374	Medulloblastoma invading the transverse sinus. Journal of Neurosurgery: Pediatrics, 2013, 12, 325-327.	1.3	1
375	Pontine Infantile Glioma Simplified. Cancer Cell, 2017, 32, 548-549.	16.8	1
376	Transposase-driven rearrangements in human tumors. Nature Genetics, 2017, 49, 975-977.	21.4	1
377	How do parents and providers trade-off between disability and survival? Preferences in the treatment of pediatric medulloblastoma. Patient Preference and Adherence, 2018, Volume 12, 2103-2110.	1.8	1
378	IMMU-03. TUMOR NECROSIS FACTOR OVERCOMES IMMUNE EVASION IN P53-MUTANT MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii93-ii93.	1.2	1

ARTICLE IF CITATIONS Reply to S.A. Milgrom et al. Journal of Clinical Oncology, 2020, 38, 2212-2213. 379 Basic Science of Pediatric Brain Tumors., 2015, , 59-67. 380 1 Introduction. Pediatric brain tumor. Neurosurgical Focus, 2020, 48, E1. 2.3 Amplifying natural antitumor immunity for personalized immunotherapy. Cell Research, 2022, , . 382 12.0 1 MEDB-14. Clinical outcome of pediatric medulloblastoma patients with Li-Fraumeni syndrome. 1.2 Neuro-Oncology, 2022, 24, i107-i107. Abstract 5224: The PRecision Oncology For Young peopLE (PROFYLE) Program: A national precision 384 oncology program for children, adolescents and young adults with hard-to-cure cancer in Canada. 0.9 1 Cancer Research, 2022, 82, 5224-5224. CS-01 * THE PHOSPHORYLATION OF ATOH1 LEADS TO ITS DEGRADATION MEDIATED BY THE E3 UBIQUITIN LIGASE HUWE1 IN GRANULE NEURON PROGENITORS. Neuro-Oncology, 2014, 16, v51-v51. GE-16 * JAPANESE PEDIATRIC MOLECULAR NEURO-ONCOLOGY GROUP (JPMNG): ESTABLISHMENT OF A NATIONWIDE MOLECULAR DIAGNOSTIC NETWORK FOR PEDIATRIC MALIGNANT BRAIN TUMORS IN JAPAN. 386 1.2 0 Neuro-Oncology, 2014, 16, v99-v100. MPTH-26MOLECULAR REFINEMENT OF PEDIATRIC POSTERIOR FOSSA EPENDYMOMA. Neuro-Oncology, 2015, 1.2 17, v144.1-v144. 388 Molecular Biology and Genetics of Medulloblastoma., 2015, , 265-286. 0 Fingering the Correct Culprit: NonRANdom Target Selection for Therapy of Neuroblastoma. Trends in Cancer, 2015, 1, 213-215. CMS-09BEHAVIOR AND TEMPERAMENT IN CHILDREN TREATED FOR PEDIATRIC MEDULLOBLASTOMA WITH 390 1.2 0 POSTOPERATIVE CEREBELLAR MUTISM SYNDROME. Neuro-Oncology, 2016, 18, iii17.4-iii17. MEDU-13. CONVERGENCE OF BMI1 AND CHD7 ON ERK SIGNALLING IN MEDULLOBLASTOMA. Neuro-Oncology, 1.2 2017, 19, iv40-iv40. EPEN-23. MOLECULAR HETEROGENEITY AMONG PEDIATRIC POSTERIOR FOSSA EPENDYMOMA. 392 1.2 0 Neuro-Oncology, 2018, 20, i77-i78. MBRS-14. REGULATION OF MEDULLOBLASTOMA IMMUNOGENICITY BY TP53 AND TNF ALPHA. 1.2 Neuro-Oncology, 2018, 20, i131-i131. Reply to â€[~]Assembling the brain trust: the multidisciplinary imperative in neuro-oncology'. Nature 394 27.6 0 Reviéws Clinical Oncology, 2019, 16, 522-523. EPEN-12. A COMMON FETAL DEVELOPMENTAL ORIGIN FOR PFA EPENDYMOMA, PFB EPENDYMOMA, AND 1.2 CEREBELLAR PILOCYTIC ASTROCYTOMAS. Neuro-Oncology, 2019, 21, ii79-ii80. 42. IDENTIFICATION OF BRAIN METASTASIS VULNERABILITIES USING METPLATFORM. Neuro-Oncology 396 0.7 0 Advances, 2020, 2, ii8-ii8.

#	Article	IF	CITATIONS
397	Atypical Teratoid/Rhabdoid Tumors. , 2005, , 744-750.		0
398	Medulloblastomas. , 2018, , 1-27.		0
399	Basal Suppression of Sonic Hedgehog Pathway by the G-Protein-Coupled Receptor Gpr161 Restricts Medulloblastoma Pathogenesis. SSRN Electronic Journal, 0, , .	0.4	0
400	Medulloblastomas. , 2020, , 1997-2016.		0
401	EPEN-36. THE TREATMENT OUTCOME OF PAEDIATRIC SUPRATENTORIAL C11ORF95-RELA FUSED EPENDYMOMA: A COMBINED REPORT FROM E-HIT SERIES AND AUSTRALIAN NEW ZEALAND CHILDREN'S HAEMATOLOGY/ONCOLOGY GROUP. Neuro-Oncology, 2020, 22, iii315-iii315.	1.2	0
402	MBRS-10. QUIESCENT SOX9-POSITIVE CELLS BEHIND MYC DRIVEN MEDULLOBLASTOMA RECURRENCE. Neuro-Oncology, 2020, 22, iii400-iii400.	1.2	0
403	LGG-55. OUTCOME OF BRAF V600E PEDIATRIC GLIOMAS TREATED WITH TARGETED BRAF INHIBITION. Neuro-Oncology, 2020, 22, iii377-iii377.	1.2	0
404	TBIO-15. MODELING DEVELOPMENTAL GENE EXPRESSION DYNAMICS AT CELLULAR RESOLUTION TO INTERPRET PEDIATRIC BRAIN TUMOR TRANSCRIPTIONAL PROGRAMS. Neuro-Oncology, 2020, 22, iii469-iii469.	1.2	0
405	TMOD-25. LATENT SOX9-POSITIVE CELLS BEHIND MYC-DRIVEN MEDULLOBLASTOMA RELAPSE. Neuro-Oncology, 2021, 23, vi220-vi221.	1.2	0
406	STEM-26. BLOOD-TUMOR BARRIER IS COMPOSED OF MECHANOSENSING TUMOR CELLS THAT MASK THERAPEUTIC VULNERABILITY. Neuro-Oncology, 2021, 23, vi26-vi26.	1.2	0
407	Title is missing!. , 2020, 15, e0243272.		0
408	Title is missing!. , 2020, 15, e0243272.		0
409	Title is missing!. , 2020, 15, e0243272.		0
410	Title is missing!. , 2020, 15, e0243272.		0
411	Title is missing!. , 2020, 15, e0243272.		0
412	Title is missing!. , 2020, 15, e0243272.		0
413	Title is missing!. , 2020, 15, e0243272.		0
414	Title is missing!. , 2020, 15, e0243272.		0

#	Article	IF	CITATIONS
415	EPEN-18. Oncogenic 3D genome conformations identify novel therapeutic targets in ependymoma. Neuro-Oncology, 2022, 24, i42-i42.	1.2	0
416	MEDB-07. Long-term medical and functional outcomes of medulloblastoma survivors: a population-based, matched cohort study. Neuro-Oncology, 2022, 24, i105-i105.	1.2	0
417	LGG-58. Understanding the transcriptional heterogeneity of pediatric low-grade gliomas and its implication for tumor pathophysiology. Neuro-Oncology, 2022, 24, i101-i102.	1.2	0
418	Long-term medical and functional outcomes of medulloblastoma survivors: A population-based, matched cohort study Journal of Clinical Oncology, 2022, 40, 10053-10053.	1.6	0
419	Long-term medical and functional outcomes of ependymoma survivors: A population-based, matched cohort study Journal of Clinical Oncology, 2022, 40, 10054-10054.	1.6	0