Michael D Taylor

List of Publications by Citations

Source: https://exaly.com/author-pdf/961447/michael-d-taylor-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 413
 35,564
 90
 179

 papers
 citations
 h-index
 g-index

 448
 43,767
 12.8
 6.6

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
413	Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. <i>Cancer Cell</i> , 2012 , 22, 425-37	24.3	1243
412	Molecular subgroups of medulloblastoma: the current consensus. <i>Acta Neuropathologica</i> , 2012 , 123, 465-72	14.3	1167
411	DNA methylation-based classification of central nervous system tumours. <i>Nature</i> , 2018 , 555, 469-474	50.4	992
410	Medulloblastoma comprises four distinct molecular variants. <i>Journal of Clinical Oncology</i> , 2011 , 29, 140)8 <u>212</u> 4	919
409	Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. <i>Acta Neuropathologica</i> , 2012 , 123, 473-84	14.3	678
408	Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. <i>Cancer Cell</i> , 2015 , 27, 728-43	24.3	672
407	Radial glia cells are candidate stem cells of ependymoma. <i>Cancer Cell</i> , 2005 , 8, 323-35	24.3	670
406	Mutations in SUFU predispose to medulloblastoma. <i>Nature Genetics</i> , 2002 , 31, 306-10	36.3	636
405	Dissecting the genomic complexity underlying medulloblastoma. <i>Nature</i> , 2012 , 488, 100-5	50.4	623
404	Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. <i>Cell</i> , 2012 , 148, 59-71	56.2	600
403	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. <i>Nature</i> , 2012 , 488, 49-5	650.4	596
402	The genetic landscape of the childhood cancer medulloblastoma. <i>Science</i> , 2011 , 331, 435-9	33.3	576
401	Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. <i>Nature</i> , 2012 , 488, 106-10	50.4	552
400	Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. <i>Nature Genetics</i> , 2013 , 45, 927-32	36.3	550
399	Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. <i>Journal of Clinical Oncology</i> , 2006 , 24, 1924-31	2.2	543
398	Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2017, 31, 737-754.e6	24.3	511
397	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. <i>Cell</i> , 2016 , 164, 1060-10)7 3 6.2	483

396	The whole-genome landscape of medulloblastoma subtypes. <i>Nature</i> , 2017 , 547, 311-317	50.4	472	
395	Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. <i>Cancer Cell</i> , 2014 , 25, 393-405	24.3	469	
394	Medulloblastomics: the end of the beginning. <i>Nature Reviews Cancer</i> , 2012 , 12, 818-34	31.3	443	
393	Comprehensive Analysis of Hypermutation in Human Cancer. <i>Cell</i> , 2017 , 171, 1042-1056.e10	56.2	417	
392	Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. <i>Cancer Cell</i> , 2011 , 20, 143-57	24.3	395	
391	Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. <i>Nature</i> , 2014 , 511, 428-34	50.4	377	
390	Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. <i>Journal of Neurosurgery</i> , 1999 , 90, 35-	4 ^{3.2}	370	
389	Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. <i>Nature Genetics</i> , 2009 , 41, 465-72	36.3	337	
388	Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. <i>Acta Neuropathologica</i> , 2016 , 131, 821-31	14.3	324	
387	Clonal selection drives genetic divergence of metastatic medulloblastoma. <i>Nature</i> , 2012 , 482, 529-33	50.4	322	
386	Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. <i>Cancer Cell</i> , 2016 , 29, 379-393	24.3	319	
385	Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. <i>Nature</i> , 2014 , 510, 537-41	50.4	296	
384	Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. <i>Journal of Clinical Oncology</i> , 2013 , 31, 2927-35	2.2	290	
383	YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. <i>Genes and Development</i> , 2009 , 23, 2729-41	12.6	286	
382	Challenges to curing primary brain tumours. <i>Nature Reviews Clinical Oncology</i> , 2019 , 16, 509-520	19.4	284	
381	Cross-species genomics matches driver mutations and cell compartments to model ependymoma. <i>Nature</i> , 2010 , 466, 632-6	50.4	283	
380	The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. <i>Cell</i> , 2013 , 153, 1064-79	56.2	276	
379	Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. <i>Acta Neuropathologica</i> , 2012 , 123, 615-26	14.3	265	

378	Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. <i>Nature</i> , 2017 , 543, 122-125	50.4	260
377	Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. <i>Nature Genetics</i> , 2015 , 47, 257-62	36.3	253
376	The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. <i>Cancer Research</i> , 2009 , 69, 3249-55	10.1	248
375	Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. <i>Lancet Oncology, The</i> , 2013 , 14, 1200-7	21.7	226
374	The clinical implications of medulloblastoma subgroups. <i>Nature Reviews Neurology</i> , 2012 , 8, 340-51	15	217
373	An animal model of MYC-driven medulloblastoma. <i>Cancer Cell</i> , 2012 , 21, 155-67	24.3	217
372	MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. <i>PLoS ONE</i> , 2009 , 4, e4998	3.7	208
371	Divergent clonal selection dominates medulloblastoma at recurrence. <i>Nature</i> , 2016 , 529, 351-7	50.4	206
370	The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. <i>Acta Neuropathologica</i> , 2017 , 133, 5-12	14.3	202
369	Medulloblastoma. <i>Nature Reviews Disease Primers</i> , 2019 , 5, 11	51.1	202
368	Cytogenetic prognostication within medulloblastoma subgroups. <i>Journal of Clinical Oncology</i> , 2014 , 32, 886-96	2.2	199
367	Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. <i>Nature</i> , 2017 , 549, 227-2.	33 0.4	197
366	Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. <i>Acta Neuropathologica</i> , 2013 , 125, 913-6	14.3	194
365	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. <i>Lancet Oncology, The</i> , 2016 , 17, 484-495	21.7	187
364	BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. <i>Journal of Clinical Oncology</i> , 2015 , 33, 1015-22	2.2	187
363	Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. <i>Cancer Cell</i> , 2014 , 26, 33-47	24.3	181
362	Disrupting the CD47-SIRPlanti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	179
361	Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. <i>Cancer Cell</i> , 2009 , 16, 533-46	24.3	178

(2011-2011)

360	Adult medulloblastoma comprises three major molecular variants. <i>Journal of Clinical Oncology</i> , 2011 , 29, 2717-23	2.2	176
359	Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. <i>Lancet Oncology, The</i> , 2013 , 14, 534-42	21.7	169
358	Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. <i>Lancet Oncology, The</i> , 2018 , 19, 785-798	21.7	159
357	Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. <i>Acta Neuropathologica</i> , 2011 , 122, 231-40	14.3	159
356	Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. <i>Journal of Clinical Oncology</i> , 2017 , 35, 2934-2941	2.2	153
355	Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathologica, 2014, 128, 279-89	14.3	152
354	HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. <i>Clinical Cancer Research</i> , 2010 , 16, 3240-52	12.9	152
353	Childhood cerebellar tumours mirror conserved fetal transcriptional programs. <i>Nature</i> , 2019 , 572, 67-7	7350.4	149
352	Familial posterior fossa brain tumors of infancy secondary to germline mutation of the hSNF5 gene. <i>American Journal of Human Genetics</i> , 2000 , 66, 1403-6	11	149
351	HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC-Driven Medulloblastoma. <i>Cancer Cell</i> , 2016 , 29, 311-323	24.3	146
350	Impact of craniospinal dose, boost volume, and neurologic complications on intellectual outcome in patients with medulloblastoma. <i>Journal of Clinical Oncology</i> , 2014 , 32, 1760-8	2.2	141
349	Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. <i>Cancer Cell</i> , 2012 , 21, 601-613	24.3	141
348	Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. <i>Cancer Cell</i> , 2016 , 30, 891-908	24.3	135
347	Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. <i>Nature Genetics</i> , 2014 , 46, 39-44	36.3	131
346	Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. <i>Oncogene</i> , 2004 , 23, 3444-53	9.2	131
345	Pleiotropic role for MYCN in medulloblastoma. <i>Genes and Development</i> , 2010 , 24, 1059-72	12.6	128
344	Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. <i>Acta Neuropathologica</i> , 2013 , 125, 373-84	14.3	126
343	FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. <i>Journal of Clinical Oncology</i> , 2011 , 29, 3852-61	2.2	125

342	Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations. Journal of Clinical Oncology, 2010 , 28, 1345-50	2.2	124
341	Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. <i>Lancet Oncology, The</i> , 2015 , 16, 569-82	21.7	117
340	Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. <i>Nature</i> , 2018 , 553, 101-105	50.4	116
339	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. <i>Acta Neuropathologica</i> , 2013 , 126, 917-29	14.3	115
338	Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. <i>Acta Neuropathologica</i> , 2017 , 134, 705-714	14.3	114
337	Awake craniotomy for removal of intracranial tumor: considerations for early discharge. <i>Anesthesia and Analgesia</i> , 2001 , 92, 89-94	3.9	114
336	Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis. <i>Journal of Clinical Oncology</i> , 2016 , 34, 2468-77	2.2	113
335	Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. <i>Journal of Neurosurgery</i> , 2000 , 93, 437-48	3.2	112
334	Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. <i>Acta Neuropathologica</i> , 2018 , 136, 211-226	14.3	111
333	CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity. <i>Acta Neuropathologica</i> , 2014 , 128, 291-303	14.3	111
332	Molecular subgroups of medulloblastoma. Expert Review of Neurotherapeutics, 2012, 12, 871-84	4.3	103
331	Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma. <i>Cancer Cell</i> , 2017 , 32, 295-309.e12	24.3	100
330	Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. <i>Nature Communications</i> , 2019 , 10, 4343	17.4	95
329	DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies. <i>Acta Neuropathologica</i> , 2013 , 125, 359-71	14.3	95
328	Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. <i>Acta Neuropathologica</i> , 2014 , 128, 137-49	14.3	93
327	Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas. <i>Cancer Cell</i> , 2020 , 37, 569-583.e5	24.3	92
326	MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma. <i>Journal of Biological Chemistry</i> , 2013 , 288, 1918-28	5.4	91
325	Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. <i>Acta Neuropathologica</i> , 2019 , 138, 309-326	14.3	90

324	Medulloblastoma: From Myth to Molecular. Journal of Clinical Oncology, 2017, 35, 2355-2363	2.2	90
323	Molecular insight into medulloblastoma and central nervous system primitive neuroectodermal tumor biology from hereditary syndromes: a review. <i>Neurosurgery</i> , 2000 , 47, 888-901	3.2	89
322	OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas. <i>Cancer Research</i> , 2010 , 70, 181-91	10.1	88
321	Survival benefit for pediatric patients with recurrent ependymoma treated with reirradiation. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 83, 1541-8	4	87
320	Clinical and neuroanatomical predictors of cerebellar mutism syndrome. <i>Neuro-Oncology</i> , 2012 , 14, 129	4 <u>1</u> 303	87
319	Medulloblastoma subgroup-specific outcomes in irradiated children: who are the true high-risk patients?. <i>Neuro-Oncology</i> , 2016 , 18, 291-7	1	86
318	TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. <i>Journal of Clinical Oncology</i> , 2010 , 28, 5188-96	2.2	83
317	The G protein 🗟 ubunit G 🛭 is a tumor suppressor in Sonic hedgehog-driven medulloblastoma. <i>Nature Medicine</i> , 2014 , 20, 1035-42	50.5	82
316	An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. <i>Cancer Research</i> , 2008 , 68, 9945-53	10.1	82
315	Genome-Wide Profiles of Extra-cranial Malignant Rhabdoid Tumors Reveal Heterogeneity and Dysregulated Developmental Pathways. <i>Cancer Cell</i> , 2016 , 29, 394-406	24.3	81
314	Spatial heterogeneity in medulloblastoma. <i>Nature Genetics</i> , 2017 , 49, 780-788	36.3	80
313	PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma. <i>Cancer Research</i> , 2016 , 76, 4708-19	10.1	80
312	Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. <i>Oncotarget</i> , 2014 , 5, 2355-71	3.3	80
311	The U1 spliceosomal RNA is recurrently mutated in multiple cancers. <i>Nature</i> , 2019 , 574, 712-716	50.4	79
310	EPEN-12. A COMMON FETAL DEVELOPMENTAL ORIGIN FOR PFA EPENDYMOMA, PFB EPENDYMOMA, AND CEREBELLAR PILOCYTIC ASTROCYTOMAS. <i>Neuro-Oncology</i> , 2019 , 21, ii79-ii80	1	78
309	MEDU-13. CONVERGENCE OF BMI1 AND CHD7 ON ERK SIGNALLING IN MEDULLOBLASTOMA. Neuro-Oncology, 2017 , 19, iv40-iv40	1	78
308	CMS-09BEHAVIOR AND TEMPERAMENT IN CHILDREN TREATED FOR PEDIATRIC MEDULLOBLASTOMA WITH POSTOPERATIVE CEREBELLAR MUTISM SYNDROME. <i>Neuro-Oncology</i> , 2016 , 18, iii17.4-iii17	1	78
307	MPTH-26MOLECULAR REFINEMENT OF PEDIATRIC POSTERIOR FOSSA EPENDYMOMA. Neuro-Oncology, 2015 , 17, v144.1-v144	1	78

306	CS-01THE PHOSPHORYLATION OF ATOH1 LEADS TO ITS DEGRADATION MEDIATED BY THE E3 UBIQUITIN LIGASE HUWE1 IN GRANULE NEURON PROGENITORS. <i>Neuro-Oncology</i> , 2014 , 16, v51-v51	1	78
305	GE-16 * JAPANESE PEDIATRIC MOLECULAR NEURO-ONCOLOGY GROUP (JPMNG): ESTABLISHMENT OF A NATIONWIDE MOLECULAR DIAGNOSTIC NETWORK FOR PEDIATRIC MALIGNANT BRAIN TUMORS IN JAPAN. <i>Neuro-Oncology</i> , 2014 , 16, v99-v100	1	78
304	EPEN-36. THE TREATMENT OUTCOME OF PAEDIATRIC SUPRATENTORIAL C11ORF95-RELA FUSED EPENDYMOMA: A COMBINED REPORT FROM E-HIT SERIES AND AUSTRALIAN NEW ZEALAND CHILDREN B HAEMATOLOGY/ONCOLOGY GROUP. <i>Neuro-Oncology</i> , 2020 , 22, iii315-iii315	1	78
303	MBRS-10. QUIESCENT SOX9-POSITIVE CELLS BEHIND MYC DRIVEN MEDULLOBLASTOMA RECURRENCE. <i>Neuro-Oncology</i> , 2020 , 22, iii400-iii400	1	78
302	LGG-55. OUTCOME OF BRAF V600E PEDIATRIC GLIOMAS TREATED WITH TARGETED BRAF INHIBITION. <i>Neuro-Oncology</i> , 2020 , 22, iii377-iii377	1	78
301	TBIO-15. MODELING DEVELOPMENTAL GENE EXPRESSION DYNAMICS AT CELLULAR RESOLUTION TO INTERPRET PEDIATRIC BRAIN TUMOR TRANSCRIPTIONAL PROGRAMS. <i>Neuro-Oncology</i> , 2020 , 22, iii469-iii469	1	78
300	42. IDENTIFICATION OF BRAIN METASTASIS VULNERABILITIES USING METPLATFORM. Neuro-Oncology Advances, 2020 , 2, ii8-ii8	0.9	78
299	Recurrent noncoding U1IsnRNA mutations drive cryptic splicing in SHH medulloblastoma. <i>Nature</i> , 2019 , 574, 707-711	50.4	78
298	EPEN-23. MOLECULAR HETEROGENEITY AMONG PEDIATRIC POSTERIOR FOSSA EPENDYMOMA. <i>Neuro-Oncology</i> , 2018 , 20, i77-i78	1	78
297	MBRS-14. REGULATION OF MEDULLOBLASTOMA IMMUNOGENICITY BY TP53 AND TNF ALPHA. <i>Neuro-Oncology</i> , 2018 , 20, i131-i131	1	78
296	Myocardial fibrosis burden predicts left ventricular ejection fraction and is associated with age and steroid treatment duration in duchenne muscular dystrophy. <i>Journal of the American Heart Association</i> , 2015 , 4,	6	76
295	Molecular diagnostics of CNS embryonal tumors. <i>Acta Neuropathologica</i> , 2010 , 120, 553-66	14.3	72
294	Clinical, Pathological, and Molecular Characterization of Infant Medulloblastomas Treated with Sequential High-Dose Chemotherapy. <i>Pediatric Blood and Cancer</i> , 2016 , 63, 1527-34	3	71
293	Personalizing the treatment of pediatric medulloblastoma: Polo-like kinase 1 as a molecular target in high-risk children. <i>Cancer Research</i> , 2013 , 73, 6734-44	10.1	70
292	The RAG-1/2 endonuclease causes genomic instability and controls CNS complications of lymphoblastic leukemia in p53/Prkdc-deficient mice. <i>Cancer Cell</i> , 2003 , 3, 37-50	24.3	69
291	Superior Intellectual Outcomes After Proton Radiotherapy Compared With Photon Radiotherapy for Pediatric Medulloblastoma. <i>Journal of Clinical Oncology</i> , 2020 , 38, 454-461	2.2	69
2 90	Roadmap for the Emerging Field of Cancer Neuroscience. <i>Cell</i> , 2020 , 181, 219-222	56.2	68
289	Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling. <i>Oncogene</i> , 2004 , 23, 4577-83	9.2	66

288	An epigenetic gateway to brain tumor cell identity. <i>Nature Neuroscience</i> , 2016 , 19, 10-9	25.5	65
287	MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin. <i>Cancer Cell</i> , 2015 , 28, 715-729	24.3	64
286	Molecular characterization of choroid plexus tumors reveals novel clinically relevant subgroups. <i>Clinical Cancer Research</i> , 2015 , 21, 184-92	12.9	63
285	The genetic and epigenetic basis of ependymoma. <i>Childrs Nervous System</i> , 2009 , 25, 1195-201	1.7	63
284	DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. <i>Journal of Clinical Investigation</i> , 2019 , 129, 223-229	15.9	62
283	Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling. <i>Cancer Cell</i> , 2018 , 34, 379-395.e7	24.3	62
282	Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells. <i>BMC Cancer</i> , 2012 , 12, 80	4.8	61
281	Role of LIM and SH3 protein 1 (LASP1) in the metastatic dissemination of medulloblastoma. <i>Cancer Research</i> , 2010 , 70, 8003-14	10.1	61
280	Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. <i>Nature Medicine</i> , 2020 , 26, 720-731	50.5	60
279	The RNA-binding protein Musashi1 affects medulloblastoma growth via a network of cancer-related genes and is an indicator of poor prognosis. <i>American Journal of Pathology</i> , 2012 , 181, 1762-72	5.8	60
278	Targeting the enhancer of zeste homologue 2 in medulloblastoma. <i>International Journal of Cancer</i> , 2012 , 131, 1800-9	7.5	60
277	Use of ifosfamide, carboplatin, and etoposide chemotherapy in choroid plexus carcinoma. <i>Journal of Neurosurgery: Pediatrics</i> , 2010 , 5, 615-21	2.1	59
276	Rapid diagnosis of medulloblastoma molecular subgroups. <i>Clinical Cancer Research</i> , 2011 , 17, 1883-94	12.9	59
275	Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. <i>Developmental Cell</i> , 2014 , 29, 649-61	10.2	58
274	Medulloblastoma subgroups remain stable across primary and metastatic compartments. <i>Acta Neuropathologica</i> , 2015 , 129, 449-57	14.3	58
273	Sleeping Beauty mutagenesis in a mouse medulloblastoma model defines networks that discriminate between human molecular subgroups. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, E4325-34	11.5	58
272	The genetics of pediatric brain tumors. Current Neurology and Neuroscience Reports, 2010, 10, 215-23	6.6	58
271	Stalled developmental programs at the root of pediatric brain tumors. <i>Nature Genetics</i> , 2019 , 51, 1702-	1363	58

270	Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. <i>Acta Neuropathologica</i> , 2012 , 123, 515-27	14.3	57
269	MR Imaging-Based Radiomic Signatures of Distinct Molecular Subgroups of Medulloblastoma. <i>American Journal of Neuroradiology</i> , 2019 , 40, 154-161	4.4	57
268	EAG2 potassium channel with evolutionarily conserved function as a brain tumor target. <i>Nature Neuroscience</i> , 2015 , 18, 1236-46	25.5	56
267	MicroRNA-182 promotes leptomeningeal spread of non-sonic hedgehog-medulloblastoma. <i>Acta Neuropathologica</i> , 2012 , 123, 529-38	14.3	56
266	Genetic and epigenetic inactivation of Kruppel-like factor 4 in medulloblastoma. <i>Neoplasia</i> , 2010 , 12, 20-7	6.4	56
265	Intellectual Outcome in Molecular Subgroups of Medulloblastoma. <i>Journal of Clinical Oncology</i> , 2016 , 34, 4161-4170	2.2	56
264	Voltage-gated potassium channel EAG2 controls mitotic entry and tumor growth in medulloblastoma via regulating cell volume dynamics. <i>Genes and Development</i> , 2012 , 26, 1780-96	12.6	54
263	Medulloblastoma in the age of molecular subgroups: a review. <i>Journal of Neurosurgery: Pediatrics</i> , 2019 , 24, 353-363	2.1	53
262	Heterogeneity within the PF-EPN-B ependymoma subgroup. <i>Acta Neuropathologica</i> , 2018 , 136, 227-237	14.3	52
261	Hypermutation of the inactive X chromosome is a frequent event in cancer. <i>Cell</i> , 2013 , 155, 567-81	56.2	50
2 60	Silencing of thrombospondin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. <i>Cancer Research</i> , 2010 , 70, 8199-210	10.1	50
259	Single-Cell Transcriptomics in Medulloblastoma Reveals Tumor-Initiating Progenitors and Oncogenic Cascades during Tumorigenesis and Relapse. <i>Cancer Cell</i> , 2019 , 36, 302-318.e7	24.3	49
258	Posterior fossa tumors in children: developmental anatomy and diagnostic imaging. <i>Childrs Nervous System</i> , 2015 , 31, 1661-76	1.7	48
257	BRAF alteration status and the histone H3F3A gene K27M mutation segregate spinal cord astrocytoma histology. <i>Acta Neuropathologica</i> , 2016 , 131, 147-50	14.3	48
256	CXCR4 activation defines a new subgroup of Sonic hedgehog-driven medulloblastoma. <i>Cancer Research</i> , 2012 , 72, 122-32	10.1	48
255	Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma. <i>Molecular Cancer</i> , 2014 , 13, 72	42.1	47
254	FISH and chips: the recipe for improved prognostication and outcomes for children with medulloblastoma. <i>Cancer Genetics</i> , 2011 , 204, 577-88	2.3	47
253	Foretinib is effective therapy for metastatic sonic hedgehog medulloblastoma. <i>Cancer Research</i> , 2015 , 75, 134-46	10.1	46

252	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. <i>Cell</i> , 2018 , 172, 1050-1062.6	≘5€ .2	46
251	The molecular landscape of ETMR at diagnosis and relapse. <i>Nature</i> , 2019 , 576, 274-280	50.4	46
250	Therapeutic radiation for childhood cancer drives structural aberrations of NF2 in meningiomas. <i>Nature Communications</i> , 2017 , 8, 186	17.4	45
249	Molecular pathogenesis of childhood brain tumors. <i>Journal of Neuro-Oncology</i> , 2004 , 70, 203-15	4.8	45
248	Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget, 2016 , 7, 28169-82	3.3	44
247	FBW7 suppression leads to SOX9 stabilization and increased malignancy in medulloblastoma. <i>EMBO Journal</i> , 2016 , 35, 2192-2212	13	44
246	Significance of molecular classification of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogeneous group of tumors. <i>Acta Neuropathologica Communications</i> , 2018 , 6, 134	7.3	44
245	FoxG1 interacts with Bmi1 to regulate self-renewal and tumorigenicity of medulloblastoma stem cells. <i>Stem Cells</i> , 2013 , 31, 1266-77	5.8	43
244	Targeting sonic hedgehog-associated medulloblastoma through inhibition of Aurora and Polo-like kinases. <i>Cancer Research</i> , 2013 , 73, 6310-22	10.1	43
243	ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents. <i>Cancer Discovery</i> , 2014 , 4, 1198-213	24.4	43
242	Preclinical target validation using patient-derived cells. <i>Nature Reviews Drug Discovery</i> , 2015 , 14, 149-50	64.1	40
241	Identification and Analyses of Extra-Cranial and Cranial Rhabdoid Tumor Molecular Subgroups Reveal Tumors with Cytotoxic T Cell Infiltration. <i>Cell Reports</i> , 2019 , 29, 2338-2354.e7	10.6	40
240	Medulloblastoma molecular dissection: the way toward targeted therapy. <i>Current Opinion in Oncology</i> , 2013 , 25, 674-81	4.2	40
239	Genomics of medulloblastoma: from Giemsa-banding to next-generation sequencing in 20 years. <i>Neurosurgical Focus</i> , 2010 , 28, E6	4.2	40
238	Monoallelic expression determines oncogenic progression and outcome in benign and malignant brain tumors. <i>Cancer Research</i> , 2012 , 72, 636-44	10.1	40
237	Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. <i>Cell</i> , 2020 , 181, 1329-134	55 6 224	40
236	A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. <i>Cancer Cell</i> , 2019 , 36, 51-67.e7	24.3	39
235	Alternative lengthening of telomeres is enriched in, and impacts survival of TP53 mutant pediatric malignant brain tumors. <i>Acta Neuropathologica</i> , 2014 , 128, 853-62	14.3	38

234	Functional genomics identifies drivers of medulloblastoma dissemination. <i>Cancer Research</i> , 2012 , 72, 4944-53	10.1	38
233	Poly-ADP-Ribose Polymerase as a Therapeutic Target in Pediatric Diffuse Intrinsic Pontine Glioma and Pediatric High-Grade Astrocytoma. <i>Molecular Cancer Therapeutics</i> , 2015 , 14, 2560-8	6.1	37
232	Neurosurgical management of extraaxial central nervous system infections in children. <i>Journal of Neurosurgery: Pediatrics</i> , 2011 , 7, 441-51	2.1	37
231	Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. <i>Science Signaling</i> , 2018 , 11,	8.8	37
230	Clinical implications of medulloblastoma subgroups: incidence of CSF diversion surgery. <i>Journal of Neurosurgery: Pediatrics</i> , 2015 , 15, 236-42	2.1	35
229	Spinal Myxopapillary Ependymomas Demonstrate a Warburg Phenotype. <i>Clinical Cancer Research</i> , 2015 , 21, 3750-8	12.9	35
228	Treatment developments and the unfolding of the quality of life discussion in childhood medulloblastoma: a review. <i>Childns Nervous System</i> , 2014 , 30, 979-90	1.7	35
227	The Shh receptor Boc promotes progression of early medulloblastoma to advanced tumors. <i>Developmental Cell</i> , 2014 , 31, 34-47	10.2	35
226	Expression of MAGE and GAGE genes in medulloblastoma and modulation of resistance to chemotherapy. Laboratory investigation. <i>Journal of Neurosurgery: Pediatrics</i> , 2008 , 1, 305-13	2.1	35
225	Mouse models of medulloblastoma. <i>Chinese Journal of Cancer</i> , 2011 , 30, 442-9		35
224	Nestin expression identifies ependymoma patients with poor outcome. <i>Brain Pathology</i> , 2012 , 22, 848-	6 6	34
223	Basal Suppression of the Sonic Hedgehog Pathway by the G-Protein-Coupled Receptor Gpr161 Restricts Medulloblastoma Pathogenesis. <i>Cell Reports</i> , 2018 , 22, 1169-1184	10.6	33
222	Duration of the pre-diagnostic interval in medulloblastoma is subgroup dependent. <i>Pediatric Blood and Cancer</i> , 2014 , 61, 1190-4	3	33
221	Pyruvate Kinase Inhibits Proliferation during Postnatal Cerebellar Neurogenesis and Suppresses Medulloblastoma Formation. <i>Cancer Research</i> , 2017 , 77, 3217-3230	10.1	32
220	The role of angiogenesis in Group 3 medulloblastoma pathogenesis and survival. <i>Neuro-Oncology</i> , 2017 , 19, 1217-1227	1	32
219	Deconstruction of medulloblastoma cellular heterogeneity reveals differences between the most highly invasive and self-renewing phenotypes. <i>Neoplasia</i> , 2013 , 15, 384-98	6.4	32
218	WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. <i>Acta Neuropathologica Communications</i> , 2014 , 2, 174	7.3	32
217	The epigenetics of brain tumors. <i>Methods in Molecular Biology</i> , 2012 , 863, 139-53	1.4	32

(2018-2009)

216	regulation of mammalian target of rapamycin activity and p27 Kip1 localization. <i>Cancer Research</i> , 2009 , 69, 7224-34	10.1	32
215	Transcriptional profiling of medulloblastoma in children. <i>Journal of Neurosurgery</i> , 2003 , 99, 534-41	3.2	32
214	Executive function in paediatric medulloblastoma: The role of cerebrocerebellar connections. Journal of Neuropsychology, 2017 , 11, 174-200	2.6	31
213	Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. <i>Cell Stem Cell</i> , 2019 , 25, 433-446.e7	18	31
212	High-resolution structural genomics reveals new therapeutic vulnerabilities in glioblastoma. <i>Genome Research</i> , 2019 , 29, 1211-1222	9.7	31
211	Medulloblastoma in a child with Rubenstein-Taybi Syndrome: case report and review of the literature. <i>Pediatric Neurosurgery</i> , 2001 , 35, 235-8	0.9	31
2 10	scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy. <i>Nature Communications</i> , 2019 , 10, 5829	17.4	31
209	Overcoming resistance to Sonic Hedgehog inhibition by targeting p90 ribosomal S6 kinase in pediatric medulloblastoma. <i>Pediatric Blood and Cancer</i> , 2014 , 61, 107-15	3	30
208	ABC transporter activity linked to radiation resistance and molecular subtype in pediatric medulloblastoma. <i>Experimental Hematology and Oncology</i> , 2013 , 2, 26	7.8	30
207	Telomerase inhibition abolishes the tumorigenicity of pediatric ependymoma tumor-initiating cells. <i>Acta Neuropathologica</i> , 2014 , 128, 863-77	14.3	30
206	Molecular genetics of ependymoma. <i>Chinese Journal of Cancer</i> , 2011 , 30, 669-81		30
205	Review of molecular classification and treatment implications of pediatric brain tumors. <i>Current Opinion in Pediatrics</i> , 2018 , 30, 3-9	3.2	30
204	A homing system targets therapeutic T cells to brain cancer. <i>Nature</i> , 2018 , 561, 331-337	50.4	30
203	H3 K27M mutations are extremely rare in posterior fossa group A ependymoma. <i>Childrs Nervous System</i> , 2017 , 33, 1047-1051	1.7	29
202	Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. <i>Cell</i> , 2020 , 183, 1617-1633.e22	56.2	29
201	Genetic and molecular alterations across medulloblastoma subgroups. <i>Journal of Molecular Medicine</i> , 2015 , 93, 1075-84	5.5	27
200	Rapid determination of medulloblastoma subgroup affiliation with mass spectrometry using a handheld picosecond infrared laser desorption probe. <i>Chemical Science</i> , 2017 , 8, 6508-6519	9.4	27
199	Differential patterns of metastatic dissemination across medulloblastoma subgroups. <i>Journal of Neurosurgery: Pediatrics</i> , 2018 , 21, 145-152	2.1	27

198	Survival and functional outcomes of molecularly defined childhood posterior fossa ependymoma: Cure at a cost. <i>Cancer</i> , 2019 , 125, 1867-1876	6.4	26
197	Evasion of Cell Senescence Leads to Medulloblastoma Progression. <i>Cell Reports</i> , 2016 , 14, 2925-37	10.6	26
196	Incorporation of C-1 lateral mass screws in occipitocervical and atlantoaxial fusions for children 8 years of age or younger. Technical note. <i>Journal of Neurosurgery: Pediatrics</i> , 2007 , 107, 178-83	2.1	26
195	Application of a Neural Network Whole Transcriptome-Based Pan-Cancer Method for Diagnosis of Primary and Metastatic Cancers. <i>JAMA Network Open</i> , 2019 , 2, e192597	10.4	25
194	Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma. <i>Developmental Cell</i> , 2018 , 44, 709-724.e6	10.2	25
193	Genome-Wide DNA Methylation Analysis Reveals Epigenetic Dysregulation of MicroRNA-34A in TP53-Associated Cancer Susceptibility. <i>Journal of Clinical Oncology</i> , 2016 , 34, 3697-3704	2.2	25
192	Normal and oncogenic roles for microRNAs in the developing brain. <i>Cell Cycle</i> , 2009 , 8, 4049-54	4.7	25
191	Neogenin1 is a Sonic Hedgehog target in medulloblastoma and is necessary for cell cycle progression. <i>International Journal of Cancer</i> , 2014 , 134, 21-31	7.5	24
190	Multiple CDK/CYCLIND genes are amplified in medulloblastoma and supratentorial primitive neuroectodermal brain tumor. <i>Cancer Genetics</i> , 2012 , 205, 220-31	2.3	24
189	Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma. <i>Nature Communications</i> , 2018 , 9, 4121	17.4	24
188	The clinical importance of medulloblastoma extent of resection: a systematic review. <i>Journal of Neuro-Oncology</i> , 2018 , 139, 523-539	4.8	24
187	Neoadjuvant chemotherapy reduces blood loss during the resection of pediatric choroid plexus carcinomas. <i>Journal of Neurosurgery: Pediatrics</i> , 2015 , 16, 126-33	2.1	23
186	Outcomes of BRAF V600E Pediatric Gliomas Treated With Targeted BRAF Inhibition. <i>JCO Precision Oncology</i> , 2020 , 4,	3.6	23
185	Genetic drivers of metastatic dissemination in sonic hedgehog medulloblastoma. <i>Acta Neuropathologica Communications</i> , 2014 , 2, 85	7.3	23
184	Subgroup-specific alternative splicing in medulloblastoma. <i>Acta Neuropathologica</i> , 2012 , 123, 485-499	14.3	23
183	Dual Regulatory Functions of SUFU and Targetome of GLI2 in SHH Subgroup Medulloblastoma. <i>Developmental Cell</i> , 2019 , 48, 167-183.e5	10.2	23
182	Tumor necrosis factor overcomes immune evasion in p53-mutant medulloblastoma. <i>Nature Neuroscience</i> , 2020 , 23, 842-853	25.5	22
181	p53 and Meduloblastoma. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2015 , 6, a026278	5.4	22

180	Polycomb group gene BMI1 controls invasion of medulloblastoma cells and inhibits BMP-regulated cell adhesion. <i>Acta Neuropathologica Communications</i> , 2014 , 2, 10	7.3	22
179	Notch1-induced brain tumor models the sonic hedgehog subgroup of human medulloblastoma. <i>Cancer Research</i> , 2013 , 73, 5381-90	10.1	22
178	Retrospective family study of childhood medulloblastoma. <i>American Journal of Medical Genetics, Part A</i> , 2005 , 134, 399-403	2.5	22
177	Posterior fossa ependymoma: current insights. <i>Childrs Nervous System</i> , 2015 , 31, 1699-706	1.7	21
176	Proteomic analysis of Medulloblastoma reveals functional biology with translational potential. <i>Acta Neuropathologica Communications</i> , 2018 , 6, 48	7.3	21
175	Gene-expression profiling elucidates molecular signaling networks that can be therapeutically targeted in vestibular schwannoma. <i>Journal of Neurosurgery</i> , 2014 , 121, 1434-45	3.2	21
174	An epigenetic therapy for diffuse intrinsic pontine gliomas. <i>Nature Medicine</i> , 2014 , 20, 1378-9	50.5	21
173	SnapShot: Medulloblastoma. <i>Cancer Cell</i> , 2014 , 26, 940-940.e1	24.3	21
172	Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3392-3397	11.5	20
171	Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma. <i>Oncotarget</i> , 2015 , 6, 21718-29	3.3	20
170	MRI Characteristics of Primary Tumors and Metastatic Lesions in Molecular Subgroups of Pediatric Medulloblastoma: A Single-Center Study. <i>American Journal of Neuroradiology</i> , 2018 , 39, 949-955	4.4	19
169	ID1 Is Critical for Tumorigenesis and Regulates Chemoresistance in Glioblastoma. <i>Cancer Research</i> , 2019 , 79, 4057-4071	10.1	19
168	MyoD is a tumor suppressor gene in medulloblastoma. Cancer Research, 2013, 73, 6828-37	10.1	19
167	Canonical TGF-[þathway activity is a predictor of SHH-driven medulloblastoma survival and delineates putative precursors in cerebellar development. <i>Brain Pathology</i> , 2013 , 23, 178-91	6	19
166	Convergence of BMI1 and CHD7 on ERK Signaling in Medulloblastoma. Cell Reports, 2017, 21, 2772-2784	4 10.6	19
165	DNA Polymerase and Mismatch Repair Exert Distinct Microsatellite Instability Signatures in Normal and Malignant Human Cells. <i>Cancer Discovery</i> , 2021 , 11, 1176-1191	24.4	19
164	Mechanism of action and therapeutic efficacy of Aurora kinase B inhibition in MYC overexpressing medulloblastoma. <i>Oncotarget</i> , 2015 , 6, 3359-74	3.3	19
163	Vulnerability of white matter to insult during childhood: evidence from patients treated for medulloblastoma. <i>Journal of Neurosurgery: Pediatrics</i> , 2016 , 18, 29-40	2.1	19

162	Tailoring Medulloblastoma Treatment Through Genomics: Making a Change, One Subgroup at a Time. <i>Annual Review of Genomics and Human Genetics</i> , 2017 , 18, 143-166	9.7	18
161	Picosecond Infrared Laser Desorption Mass Spectrometry Identifies Medulloblastoma Subgroups on Intrasurgical Timescales. <i>Cancer Research</i> , 2019 , 79, 2426-2434	10.1	18
160	DDX3X Suppresses the Susceptibility of Hindbrain Lineages to Medulloblastoma. <i>Developmental Cell</i> , 2020 , 54, 455-470.e5	10.2	18
159	Poliovirus Receptor (CD155) Expression in Pediatric Brain Tumors Mediates Oncolysis of Medulloblastoma and Pleomorphic Xanthoastrocytoma. <i>Journal of Neuropathology and Experimental Neurology</i> , 2018 , 77, 696-702	3.1	18
158	Emerging insights into the ependymoma epigenome. <i>Brain Pathology</i> , 2013 , 23, 206-9	6	18
157	De-escalation of therapy for pediatric medulloblastoma: trade-offs between quality of life and survival. <i>Pediatric Blood and Cancer</i> , 2014 , 61, 1300-4	3	18
156	Matching mice to malignancy: molecular subgroups and models of medulloblastoma. <i>Childrs Nervous System</i> , 2012 , 28, 521-32	1.7	18
155	PCDH10 is a candidate tumour suppressor gene in medulloblastoma. <i>Childr</i> Nervous System, 2011 , 27, 1243-9	1.7	18
154	WIP1 enhances tumor formation in a sonic hedgehog-dependent model of medulloblastoma. <i>Neurosurgery</i> , 2012 , 70, 1003-10; discussion 1010	3.2	18
153	The hPMS2 exon 5 mutation and malignant glioma. Case report. <i>Journal of Neurosurgery</i> , 1999 , 90, 946-	592	18
152	A microRNA-1280/JAG2 network comprises a novel biological target in high-risk medulloblastoma. <i>Oncotarget</i> , 2015 , 6, 2709-24	3.3	18
151	Characterization of novel biomarkers in selecting for subtype specific medulloblastoma phenotypes. <i>Oncotarget</i> , 2015 , 6, 38881-900	3.3	18
150	TGF-Determines the Pro-migratory Potential of bFGF Signaling in Medulloblastoma. <i>Cell Reports</i> , 2018 , 23, 3798-3812.e8	10.6	18
149	Insertional Mutagenesis Reveals Important Genetic Drivers of Central Nervous System Embryonal Tumors. <i>Cancer Research</i> , 2019 , 79, 905-917	10.1	17
148	Visualization and segmentation of reciprocal cerebrocerebellar pathways in the healthy and injured brain. <i>Human Brain Mapping</i> , 2015 , 36, 2615-28	5.9	17
147	Epigenetic states of cells of origin and tumor evolution drive tumor-initiating cell phenotype and tumor heterogeneity. <i>Cancer Research</i> , 2014 , 74, 4864-74	10.1	17
146	Proteomic profiling of high risk medulloblastoma reveals functional biology. <i>Oncotarget</i> , 2015 , 6, 14584	1-95	17
145	Medulloblastoma in the Molecular Era. <i>Journal of Korean Neurosurgical Society</i> , 2018 , 61, 292-301	2.3	17

(2020-2016)

144	Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. <i>ELife</i> , 2016 , 5,	8.9	17	
143	Deep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional Study. <i>American Journal of Neuroradiology</i> , 2020 , 41, 1718-1725	4.4	17	
142	MPS1 kinase as a potential therapeutic target in medulloblastoma. Oncology Reports, 2016, 36, 2633-20	64 90 5	17	
141	Treatment implications of posterior fossa ependymoma subgroups. <i>Chinese Journal of Cancer</i> , 2016 , 35, 93		17	
140	Reproducibility of the NanoString 22-gene molecular subgroup assay for improved prognostic prediction of medulloblastoma. <i>Neuropathology</i> , 2018 , 38, 475-483	2	17	
139	CD271 Cells Are Diagnostic and Prognostic and Exhibit Elevated MAPK Activity in SHH Medulloblastoma. <i>Cancer Research</i> , 2018 , 78, 4745-4759	10.1	16	
138	Sleeping Beauty mouse models identify candidate genes involved in gliomagenesis. <i>PLoS ONE</i> , 2014 , 9, e113489	3.7	16	
137	G-protein coupled receptor expression patterns delineate medulloblastoma subgroups. <i>Acta Neuropathologica Communications</i> , 2013 , 1, 66	7.3	16	
136	Posterior fossa ependymomas: new radiological classification with surgical correlation. <i>Childns Nervous System</i> , 2010 , 26, 1765-72	1.7	16	
135	Craniospinal irradiation as part of re-irradiation for children with recurrent intracranial ependymoma. <i>Neuro-Oncology</i> , 2019 , 21, 547-557	1	16	
134	Subgroup-specific prognostic signaling and metabolic pathways in pediatric medulloblastoma. <i>BMC Cancer</i> , 2019 , 19, 571	4.8	15	
133	A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma. <i>Clinical Cancer Research</i> , 2018 , 24, 1355-1363	12.9	15	
132	MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties. <i>BMC Cancer</i> , 2016 , 16, 115	4.8	15	
131	Molecular genetics of pineal region neoplasms. <i>Journal of Neuro-Oncology</i> , 2001 , 54, 219-38	4.8	15	
130	Leptomeningeal dissemination: a sinister pattern of medulloblastoma growth. <i>Journal of Neurosurgery: Pediatrics</i> , 2019 , 1-9	2.1	15	
129	Prognostic relevance of miR-124-3p and its target TP53INP1 in pediatric ependymoma. <i>Genes Chromosomes and Cancer</i> , 2017 , 56, 639-650	5	14	
128	Intratumoral Genetic and Functional Heterogeneity in Pediatric Glioblastoma. <i>Cancer Research</i> , 2019 , 79, 2111-2123	10.1	14	
127	Clinical impact of combined epigenetic and molecular analysis of pediatric low-grade gliomas. <i>Neuro-Oncology</i> , 2020 , 22, 1474-1483	1	14	

126	Genetics of choroid plexus tumors. <i>Neurosurgical Focus</i> , 2006 , 20, E10	4.2	14
125	The history of neurosurgery at the Hospital for Sick Children in Toronto. <i>Neurosurgery</i> , 2007 , 61, 612-24; discussion 624-5	3.2	14
124	Cip/Kip cell-cycle inhibitors: a neuro-oncological perspective. <i>Journal of Neuro-Oncology</i> , 2001 , 51, 205-	- 18 .8	14
123	H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone. <i>Cancer Discovery</i> , 2020 , 10, 1968-1987	24.4	14
122	PPAR and GST polymorphisms may predict changes in intellectual functioning in medulloblastoma survivors. <i>Journal of Neuro-Oncology</i> , 2019 , 142, 39-48	4.8	14
121	Ultra high-risk PFA ependymoma is characterized by loss of chromosome 6q. <i>Neuro-Oncology</i> , 2021 , 23, 1360-1370	1	14
120	HDAC and MAPK/ERK Inhibitors Cooperate To Reduce Viability and Stemness in Medulloblastoma. Journal of Molecular Neuroscience, 2020 , 70, 981-992	3.3	13
119	Metastatic group 3 medulloblastoma is driven by PRUNE1 targeting NME1-TGF-EOTX2-SNAIL via PTEN inhibition. <i>Brain</i> , 2018 , 141, 1300-1319	11.2	13
118	Put away your microscopes: the ependymoma molecular era has begun. <i>Current Opinion in Oncology</i> , 2017 , 29, 443-447	4.2	13
117	MAP4K4 controlled integrin 1 activation and c-Met endocytosis are associated with invasive behavior of medulloblastoma cells. <i>Oncotarget</i> , 2018 , 9, 23220-23236	3.3	13
116	Integrated analysis of proteome, phosphotyrosine-proteome, tyrosine-kinome, and tyrosine-phosphatome in acute myeloid leukemia. <i>Proteomics</i> , 2017 , 17, 1600361	4.8	12
115	Measuring the optical characteristics of medulloblastoma with optical coherence tomography. <i>Biomedical Optics Express</i> , 2015 , 6, 1487-501	3.5	12
114	miR miR on the wall, who's the most malignant medulloblastoma miR of them all?. <i>Neuro-Oncology</i> , 2018 , 20, 313-323	1	12
113	Dose-level response rates of mTor inhibition in tuberous sclerosis complex (TSC) related subependymal giant cell astrocytoma (SEGA). <i>Pediatric Blood and Cancer</i> , 2015 , 62, 1754-60	3	12
112	Intertumoral and intratumoral heterogeneity as a barrier for effective treatment of medulloblastoma. <i>Neurosurgery</i> , 2013 , 60 Suppl 1, 57-63	3.2	12
111	Intracerebral malignant peripheral nerve sheath tumor in a child with neurofibromatosis Type 1 and middle cerebral artery aneurysm treated with endovascular coil embolization. <i>Journal of Neurosurgery: Pediatrics</i> , 2011 , 8, 346-52	2.1	12
110	Checkpoint kinase 1 expression is an adverse prognostic marker and therapeutic target in MYC-driven medulloblastoma. <i>Oncotarget</i> , 2016 , 7, 53881-53894	3.3	12
109	Principles and Practice of Pediatric Neurosurgery 2008 ,		12

(2020-2020)

108	Pattern of Relapse and Treatment Response in WNT-Activated Medulloblastoma. <i>Cell Reports Medicine</i> , 2020 , 1,	18	11
107	The molecular biology of medulloblastoma metastasis. <i>Brain Pathology</i> , 2020 , 30, 691-702	6	11
106	BMI1 is a therapeutic target in recurrent medulloblastoma. <i>Oncogene</i> , 2019 , 38, 1702-1716	9.2	11
105	The Transition from Quiescent to Activated States in Human Hematopoietic Stem Cells Is Governed by Dynamic 3D Genome Reorganization. <i>Cell Stem Cell</i> , 2021 , 28, 488-501.e10	18	11
104	Upregulation of the chromatin remodeler HELLS is mediated by YAP1 in Sonic Hedgehog Medulloblastoma. <i>Scientific Reports</i> , 2019 , 9, 13611	4.9	10
103	Somatostatin receptor subtype 2 (sst¶is a potential prognostic marker and a therapeutic target in medulloblastoma. <i>Childr</i> s <i>Nervous System</i> , 2013 , 29, 1253-62	1.7	10
102	Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation. <i>DMM Disease Models and Mechanisms</i> , 2013 , 6, 49-63	4.1	10
101	Medulloblastoma Arises from the Persistence of a Rare and Transient Sox2 Granule Neuron Precursor. <i>Cell Reports</i> , 2020 , 31, 107511	10.6	10
100	Infusion of 5-Azacytidine (5-AZA) into the fourth ventricle or resection cavity in children with recurrent posterior Fossa Ependymoma: a pilot clinical trial. <i>Journal of Neuro-Oncology</i> , 2019 , 141, 449-	4 \$ \$	10
99	The Amazing and Deadly Glioma Race. <i>Cancer Cell</i> , 2015 , 28, 275-7	24.3	9
99 98	The Amazing and Deadly Glioma Race. Cancer Cell, 2015, 28, 275-7 The AHR pathway represses TGFESMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. Scientific Reports, 2020, 10, 148	24.3 4.9	9
	The AHR pathway represses TGFESMAD3 signalling and has a potent tumour suppressive role in		
98	The AHR pathway represses TGFESMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. <i>Scientific Reports</i> , 2020 , 10, 148 Characterization of a novel OTX2-driven stem cell program in Group 3 and Group 4	4.9	9
98 97	The AHR pathway represses TGFESMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. <i>Scientific Reports</i> , 2020 , 10, 148 Characterization of a novel OTX2-driven stem cell program in Group 3 and Group 4 medulloblastoma. <i>Molecular Oncology</i> , 2018 , 12, 495-513 Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset	4.9	9
98 97 96	The AHR pathway represses TGFESMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. <i>Scientific Reports</i> , 2020 , 10, 148 Characterization of a novel OTX2-driven stem cell program in Group 3 and Group 4 medulloblastoma. <i>Molecular Oncology</i> , 2018 , 12, 495-513 Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma. <i>Acta Neuropathologica Communications</i> , 2020 , 8, 173	4·9 7·9 7·3	9 9
98 97 96 95	The AHR pathway represses TGFESMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. <i>Scientific Reports</i> , 2020 , 10, 148 Characterization of a novel OTX2-driven stem cell program in Group 3 and Group 4 medulloblastoma. <i>Molecular Oncology</i> , 2018 , 12, 495-513 Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma. <i>Acta Neuropathologica Communications</i> , 2020 , 8, 173 Neurotrophin Signaling in Medulloblastoma. <i>Cancers</i> , 2020 , 12, Single-cell chromatin accessibility profiling of glioblastoma identifies an invasive cancer stem cell	4·9 7·9 7·3	9 9 9
98 97 96 95 94	The AHR pathway represses TGFESMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. <i>Scientific Reports</i> , 2020 , 10, 148 Characterization of a novel OTX2-driven stem cell program in Group 3 and Group 4 medulloblastoma. <i>Molecular Oncology</i> , 2018 , 12, 495-513 Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma. <i>Acta Neuropathologica Communications</i> , 2020 , 8, 173 Neurotrophin Signaling in Medulloblastoma. <i>Cancers</i> , 2020 , 12, Single-cell chromatin accessibility profiling of glioblastoma identifies an invasive cancer stem cell population associated with lower survival. <i>ELife</i> , 2021 , 10, Molecular correlates of cerebellar mutism syndrome in medulloblastoma. <i>Neuro-Oncology</i> , 2020 ,	4.9 7.9 7.3 6.6 8.9	9 9 9 9

90	5-Hydroxymethylcytosine preferentially targets genes upregulated in isocitrate dehydrogenase 1 mutant high-grade glioma. <i>Acta Neuropathologica</i> , 2018 , 135, 617-634	14.3	8
89	An OTX2-PAX3 signaling axis regulates Group 3 medulloblastoma cell fate. <i>Nature Communications</i> , 2020 , 11, 3627	17.4	8
88	Chloride intracellular channel 1 cooperates with potassium channel EAG2 to promote medulloblastoma growth. <i>Journal of Experimental Medicine</i> , 2020 , 217,	16.6	8
87	Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus. <i>Journal of Neurosurgery: Pediatrics</i> , 2020 , 1-8	2.1	8
86	Fall of the Optical Wall: Freedom from the Tyranny of the Microscope Improves Glioma Risk Stratification. <i>Cancer Cell</i> , 2016 , 29, 137-8	24.3	7
85	Incidence of metastatic disease and survival among patients with newly diagnosed primary CNS tumors in the United States from 2004-2013. <i>Journal of Cancer</i> , 2019 , 10, 3037-3045	4.5	7
84	Detection of Active Coronary Arterial Vasculitis Using Magnetic Resonance Imaging in Kawasaki Disease. <i>Circulation</i> , 2005 , 112,	16.7	7
83	Expression of GNAS, TP53, and PTEN Improves the Patient Prognostication in Sonic Hedgehog (SHH) Medulloblastoma Subgroup. <i>Journal of Molecular Diagnostics</i> , 2020 , 22, 957-966	5.1	7
82	The transcriptional landscape of Shh medulloblastoma. <i>Nature Communications</i> , 2021 , 12, 1749	17.4	7
81	Modeling germline mutations in pineoblastoma uncovers lysosome disruption-based therapy. <i>Nature Communications</i> , 2020 , 11, 1825	17.4	7
80	Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. Journal of Clinical Oncology, 2021 , 39, 807-821	2.2	7
79	A functional genomics approach to identify pathways of drug resistance in medulloblastoma. <i>Acta Neuropathologica Communications</i> , 2018 , 6, 146	7.3	7
78	Successful treatment of primary intracranial sarcoma with the ICE chemotherapy regimen and focal radiation in children. <i>Journal of Neurosurgery: Pediatrics</i> , 2016 , 17, 298-302	2.1	6
77	Antitumor Activities and Cellular Changes Induced by TrkB Inhibition in Medulloblastoma. <i>Frontiers in Pharmacology</i> , 2019 , 10, 698	5.6	6
76	Medulloblastoma has a global impact on health related quality of life: Findings from an international cohort. <i>Cancer Medicine</i> , 2020 , 9, 447-459	4.8	6
75	Mutations in the RAS/MAPK Pathway Drive Replication Repair-Deficient Hypermutated Tumors and Confer Sensitivity to MEK Inhibition. <i>Cancer Discovery</i> , 2021 , 11, 1454-1467	24.4	6
74	Re-irradiation for children with recurrent medulloblastoma in Toronto, Canada: a 20-year experience. <i>Journal of Neuro-Oncology</i> , 2019 , 145, 107-114	4.8	5
73	Advances in Genomics Explain Medulloblastoma Behavior at the Bedside. <i>Neurosurgery</i> , 2017 , 64, 21-26	3.2	5

(2018-2019)

72	An autocrine ActivinB mechanism drives TGF/Activin signaling in Group 3 medulloblastoma. <i>EMBO Molecular Medicine</i> , 2019 , 11, e9830	12	5
71	Perspectives in pediatric neurosurgery. <i>Childn</i> s Nervous System, 2000 , 16, 809-20	1.7	5
70	Abstract 4347: Medulloblastoma comprises four distinct diseases 2010 ,		5
69	Childhood Cerebellar Tumors Mirror Conserved Fetal Transcriptional Programs		5
68	European genetic ancestry associated with risk of childhood ependymoma. <i>Neuro-Oncology</i> , 2020 , 22, 1637-1646	1	5
67	Spatial concordance of DNA methylation classification in diffuse glioma. <i>Neuro-Oncology</i> , 2021 , 23, 205	54 1 2065	5 5
66	p53 Function Is Compromised by Inhibitor 2 of Phosphatase 2A in Sonic Hedgehog Medulloblastoma. <i>Molecular Cancer Research</i> , 2019 , 17, 186-198	6.6	5
65	Pathological Findings of a Subependymal Giant Cell Astrocytoma Following Treatment With Rapamycin. <i>Pediatric Neurology</i> , 2015 , 53, 238-242.e1	2.9	4
64	Anaplastic medulloblastoma in a child with Duchenne muscular dystrophy. <i>Journal of Neurosurgery: Pediatrics</i> , 2012 , 10, 21-4	2.1	4
63	Identification of CD24 as a marker of Patched1 deleted medulloblastoma-initiating neural progenitor cells. <i>PLoS ONE</i> , 2019 , 14, e0210665	3.7	3
62	Myc and Loss of p53 Cooperate to Drive Formation of Choroid Plexus Carcinoma. <i>Cancer Research</i> , 2019 , 79, 2208-2219	10.1	3
61	Pediatric cancer genomics, a play rather than a portrait. <i>Nature Genetics</i> , 2015 , 47, 851-2	36.3	3
60	Early Lethality Due to a Novel Desmoplakin Variant Causing Infantile Epidermolysis Bullosa Simplex With Fragile Skin, Aplasia Cutis Congenita, and Arrhythmogenic Cardiomyopathy. <i>Circulation Genomic and Precision Medicine</i> , 2020 , 13, e002800	5.2	3
59	Bioinformatics in neurosurgery. <i>Neurosurgery</i> , 2003 , 52, 723-30; discussion 730-1	3.2	3
58	Embryonal Brain Tumors 2015 , 127-138		3
57	Emergence and maintenance of actionable genetic drivers at medulloblastoma relapse. Neuro-Oncology, 2021,	1	3
56	Eye Movements and White Matter are Associated with Emotional Control in Children Treated for Brain Tumors. <i>Journal of the International Neuropsychological Society</i> , 2020 , 26, 978-992	3.1	2
55	CAR T cells for childhood diffuse midline gliomas. <i>Nature Medicine</i> , 2018 , 24, 534-535	50.5	2

54	Cancer: Drain the swamp to beat glioma. <i>Nature</i> , 2017 , 549, 460-461	50.4	2
53	Genome-wide methylation analysis. <i>Methods in Molecular Biology</i> , 2012 , 863, 303-17	1.4	2
52	Reply to J.C. Lindsey et al. <i>Journal of Clinical Oncology</i> , 2011 , 29, e348-e349	2.2	2
51	Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency <i>Nature Medicine</i> , 2022 ,	50.5	2
50	Activated leukocyte cell adhesion molecule expression correlates with the WNT subgroup in medulloblastoma and is involved in regulating tumor cell proliferation and invasion. <i>PLoS ONE</i> , 2020 , 15, e0243272	3.7	2
49	GLI3Is Associated With Neuronal Differentiation in SHH-Activated and WNT-Activated Medulloblastoma. <i>Journal of Neuropathology and Experimental Neurology</i> , 2021 , 80, 129-136	3.1	2
48	Subgroup and subtype-specific outcomes in adult medulloblastoma. <i>Acta Neuropathologica</i> , 2021 , 142, 859-871	14.3	2
47	A clinically compatible drug-screening platform based on organotypic cultures identifies vulnerabilities to prevent and treat brain metastasis <i>EMBO Molecular Medicine</i> , 2022 , e14552	12	2
46	Retraction Note: A homing system targets therapeutic T cells to brain cancer. <i>Nature</i> , 2019 , 567, 132	50.4	1
45	Reply to S.A. Milgrom et al. <i>Journal of Clinical Oncology</i> , 2020 , 38, 2212-2213	2.2	1
44	Pontine Infantile Glioma Simplified. <i>Cancer Cell</i> , 2017 , 32, 548-549	24.3	1
43	Transposase-driven rearrangements in human tumors. <i>Nature Genetics</i> , 2017 , 49, 975-977	36.3	1
42	ICGC PedBrain - dissecting the genomic complexity underlying medulloblastoma using whole-genome sequencing. <i>BMC Proceedings</i> , 2012 , 6,	2.3	1
41	Reply to J.C. Lindsey et al. <i>Journal of Clinical Oncology</i> , 2011 , 29, e347-e347	2.2	1
40	The biology of ependymomas and Lemerging novel therapies <i>Nature Reviews Cancer</i> , 2022 ,	31.3	1
39	Reevaluating surgery and re-irradiation for locally recurrent pediatric ependymoma-a multi-institutional study <i>Neuro-Oncology Advances</i> , 2021 , 3, vdab158	0.9	1
38	Basic Science of Pediatric Brain Tumors 2015 , 59-67		1
37	Postoperative isolated lower extremity supplementary motor area syndrome: case report and review of the literature. <i>Childrs Nervous System</i> , 2020 , 36, 189-195	1.7	1

(2010-2020)

36	Left Ventricular Magnetic Resonance Imaging Strain Predicts the Onset of Duchenne Muscular Dystrophy-Associated Cardiomyopathy. <i>Circulation: Cardiovascular Imaging</i> , 2020 , 13, e011526	3.9	1
35	Systems pharmacogenomics identifies novel targets and clinically actionable therapeutics for medulloblastoma. <i>Genome Medicine</i> , 2021 , 13, 103	14.4	1
34	Bioinformatic Strategies for the Genomic and Epigenomic Characterization of Brain Tumors. <i>Methods in Molecular Biology</i> , 2019 , 1869, 37-56	1.4	1
33	Radiation-induced intracranial aneurysm presenting with acute hemorrhage in a child treated for medulloblastoma. <i>Childrs Nervous System</i> , 2021 , 37, 1387-1389	1.7	1
32	How do parents and providers trade-off between disability and survival? Preferences in the treatment of pediatric medulloblastoma. <i>Patient Preference and Adherence</i> , 2018 , 12, 2103-2110	2.4	1
31	Clinical phenotypes and prognostic features of embryonal tumours with multi-layered rosettes: a Rare Brain Tumor Registry study. <i>The Lancet Child and Adolescent Health</i> , 2021 , 5, 800-813	14.5	1
30	IMMU-03. TUMOR NECROSIS FACTOR OVERCOMES IMMUNE EVASION IN P53-MUTANT MEDULLOBLASTOMA. <i>Neuro-Oncology</i> , 2019 , 21, ii93-ii93	1	0
29	Advanced cancer genetics in neurosurgical research. <i>Neurosurgery</i> , 2003 , 53, 1168-78; discussion 1178	3.2	0
28	Myocardial Parametric Mapping by Cardiac Magnetic Resonance Imaging in Pediatric Cardiology and Congenital Heart Disease <i>Circulation: Cardiovascular Imaging</i> , 2022 , CIRCIMAGING120012242	3.9	0
27	Modeling human brain tumors in flies, worms, and zebrafish: From proof of principle to novel therapeutic targets. <i>Neuro-Oncology</i> , 2021 , 23, 718-731	1	0
26	Nailing a Fe-rocious form of cancer. <i>Science</i> , 2020 , 369, 250-251	33.3	0
25	Single allele loss-of-function mutations select and sculpt conditional cooperative networks in breast cancer. <i>Nature Communications</i> , 2021 , 12, 5238	17.4	O
24	Reply to 'Assembling the brain trust: the multidisciplinary imperative in neuro-oncology'. <i>Nature Reviews Clinical Oncology</i> , 2019 , 16, 522-523	19.4	
23	Molecular Biology and Genetics of Medulloblastoma 2015 , 265-286		
22	Fingering the Correct Culprit: NonRANdom Target Selection for Therapy of Neuroblastoma. <i>Trends in Cancer</i> , 2015 , 1, 213-215	12.5	
21	Medulloblastoma and CNS Primitive Neuroectodermal Tumors. <i>Molecular Pathology Library</i> , 2015 , 121-	142	
20	Medulloblastoma invading the transverse sinus: case report. <i>Journal of Neurosurgery: Pediatrics</i> , 2013 , 12, 325-7	2.1	
19	Pediatric Craniopharyngioma, Mixed Glioneuronal Tumors, and Atypical Teratoid/Rhabdoid Tumor 2010 , 62-74		

18	TMOD-25. LATENT SOX9-POSITIVE CELLS BEHIND MYC-DRIVEN MEDULLOBLASTOMA RELAPSE. Neuro-Oncology, 2021 , 23, vi220-vi221	1
17	STEM-26. BLOOD-TUMOR BARRIER IS COMPOSED OF MECHANOSENSING TUMOR CELLS THAT MASK THERAPEUTIC VULNERABILITY. <i>Neuro-Oncology</i> , 2021 , 23, vi26-vi26	1
16	Atypical Teratoid/Rhabdoid Tumors 2005 , 744-750	
15	Medulloblastomas 2018 , 1-27	
14	Medulloblastomas 2020 , 1997-2016	
13	Introduction. Pediatric brain tumor. Neurosurgical Focus, 2020, 48, E1	4.2
12	Activated leukocyte cell adhesion molecule expression correlates with the WNT subgroup in medulloblastoma and is involved in regulating tumor cell proliferation and invasion 2020 , 15, e0243272	
11	Activated leukocyte cell adhesion molecule expression correlates with the WNT subgroup in medulloblastoma and is involved in regulating tumor cell proliferation and invasion 2020 , 15, e0243272	
10	Activated leukocyte cell adhesion molecule expression correlates with the WNT subgroup in medulloblastoma and is involved in regulating tumor cell proliferation and invasion 2020 , 15, e0243272	
9	Activated leukocyte cell adhesion molecule expression correlates with the WNT subgroup in medulloblastoma and is involved in regulating tumor cell proliferation and invasion 2020 , 15, e0243272	
8	Activated leukocyte cell adhesion molecule expression correlates with the WNT subgroup in medulloblastoma and is involved in regulating tumor cell proliferation and invasion 2020 , 15, e0243272	
7	Activated leukocyte cell adhesion molecule expression correlates with the WNT subgroup in medulloblastoma and is involved in regulating tumor cell proliferation and invasion 2020 , 15, e0243272	
6	Activated leukocyte cell adhesion molecule expression correlates with the WNT subgroup in medulloblastoma and is involved in regulating tumor cell proliferation and invasion 2020 , 15, e0243272	
5	Activated leukocyte cell adhesion molecule expression correlates with the WNT subgroup in medulloblastoma and is involved in regulating tumor cell proliferation and invasion 2020 , 15, e0243272	
4	EPEN-18. Oncogenic 3D genome conformations identify novel therapeutic targets in ependymoma. <i>Neuro-Oncology</i> , 2022 , 24, i42-i42	1
3	MEDB-14. Clinical outcome of pediatric medulloblastoma patients with Li-Fraumeni syndrome. <i>Neuro-Oncology</i> , 2022 , 24, i107-i107	1
2	MEDB-07. Long-term medical and functional outcomes of medulloblastoma survivors: a population-based, matched cohort study. <i>Neuro-Oncology</i> , 2022 , 24, i105-i105	1
1	LGG-58. Understanding the transcriptional heterogeneity of pediatric low-grade gliomas and its implication for tumor pathophysiology. <i>Neuro-Oncology</i> , 2022 , 24, i101-i102	1