Leonid Trakhtenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9614468/publications.pdf

Version: 2024-02-01

687363 839539 103 647 13 g-index citations h-index papers

104 104 104 308 docs citations times ranked citing authors all docs

18

#	Article	IF	CITATIONS
1	Purification of Aqueous Solutions Containing Salts of Heavy Metals and Ballast Ions. Russian Journal of Physical Chemistry B, 2022, 16, 138-140.	1.3	O
2	Modeling the Jump-like Diffusion Motion of a Brownian Motor by a Game-Theory Approach: Deterministic and Stochastic Models. Nonlinear Phenomena in Complex Systems, 2022, , 41-50.	0.3	0
3	A Nonempirical Study of Oxygen Adsorption on the (011) In2O3 Surface. Inorganic Materials, 2022, 58, 278-283.	0.8	O
4	Crown Ethers: Selective Sorbents of Radioactive and Heavy Metals. Russian Journal of Physical Chemistry B, 2021, 15, 140-152.	1.3	7
5	Light-Driven Reciprocating Host–Guest Molecular Machines. JETP Letters, 2021, 113, 738-744.	1.4	2
6	Exactly solvable model of a slightly fluctuating ratchet. Physical Review E, 2021, 104, 014133.	2.1	4
7	Formation of Fermi Arcs at T \$\$ II \$\$ Tc in the Vicinity of d-Wave Nodes of Structurally Inhomogeneous YBa2Cu3O6.92 HTSCs. Physics of the Solid State, 2021, 63, 1244-1252.	0.6	0
8	Effect of the Method for Producing the ZnO–In2O3 Composite on its Sensor Activity in Hydrogen Detection. Russian Journal of Physical Chemistry B, 2021, 15, 1084-1086.	1.3	4
9	Effect of Composition and Structure of Metal Oxide Composites Nanostructured on Their Conductive and Sensory Properties. Russian Journal of Physical Chemistry B, 2021, 15, 1072-1083.	1.3	5
10	Oxygen Chemisorption on the Surface of an In2O3 (011) Nanocrystal. Inorganic Materials, 2020, 56, 1138-1146.	0.8	3
11	Sorption of Metal Ions from Aqueous Solutions by Crown Ethers. Russian Journal of Physical Chemistry B, 2020, 14, 492-497.	1.3	5
12	Superconductivity Initiated by Electric Field in High-Temperature Superconductor at T > Tc. Physics of the Solid State, 2020, 62, 1300-1304.	0.6	1
13	ZnO Nanocomposite Film-Based Sensors for Ethanol in Air. Russian Journal of Physical Chemistry B, 2020, 14, 298-301.	1.3	5
14	Symmetry of Brownian Photomotors. Russian Journal of Physical Chemistry B, 2020, 14, 332-335.	1.3	4
15	Nanotransport controlled by means of the ratchet effect. Physics-Uspekhi, 2020, 63, 311-326.	2.2	20
16	Influence of an External Electric Field on the Charge and Field Distributions in a Metal Tip. Journal of Experimental and Theoretical Physics, 2020, 130, 198-203.	0.9	0
17	Adiabatic Ratchet Effect in Systems with Discrete Variables. JETP Letters, 2020, 112, 316-322.	1.4	2
18	Sorbents Based on Crown Ethers for Purification of Aqueous Solutions from Metal Ions. Russian Journal of Physical Chemistry B, 2020, 14, 1036-1041.	1.3	2

#	Article	IF	CITATIONS
19	Conductance and Photoconductance of Indium Oxide-Zinc Oxide Composites in the Hydrogen-Containing Atmosphere. IFMBE Proceedings, 2020, , 405-408.	0.3	O
20	Electric Resistance of Binary Oxides CeO2–In2O3 Structured at the Nanolevel. Russian Journal of Physical Chemistry B, 2020, 14, 1063-1066.	1.3	2
21	Comparative Study of the Physical Properties of Fine-Crystalline Mechanoactivated and Sol–Gel Samples of YBa2Cu3O6.92 High-Temperature Superconductors. Russian Journal of Physical Chemistry B, 2020, 14, 986-989.	1.3	2
22	Symmetry of deterministic ratchets. Physical Review E, 2019, 100, 022115.	2.1	19
23	Green's function method in the theory of Brownian motors. Physics-Uspekhi, 2019, 62, 496-509.	2.2	18
24	Polarization Effects in Organic Dipole Photomotors. Theoretical and Experimental Chemistry, 2019, 55, 232-239.	0.8	4
25	Schottky Anomalies in the Low-Temperature Specific Heat of YBa2Cu3Oy HTSC. Journal of Experimental and Theoretical Physics, 2019, 128, 616-623.	0.9	1
26	Theory of Sensitivity of Nanoscale-Structured Layers of Metal Oxides to Reducing Gases. Russian Journal of Physical Chemistry B, 2019, 13, 190-195.	1.3	4
27	Structure and Sensing Properties of Nanostructured SnO2–In2O3 Composites Synthesized by the Impregnation Method. Russian Journal of Physical Chemistry B, 2019, 13, 763-768.	1.3	4
28	High-temperature ratchets driven by deterministic and stochastic fluctuations. Physical Review E, 2019, 99, 012103.	2.1	11
29	Sensor Properties of Nanostructured Systems Based on Indium Oxide with Co3O4 or ZrO2 Additives. Russian Journal of Physical Chemistry B, 2018, 12, 129-134.	1.3	13
30	Semiconductor Nanoparticle in an Electric Field. JETP Letters, 2018, 108, 637-640.	1.4	2
31	Synthesis of Metallic Janus Nanoparticles by Aerosol Spraying. Russian Journal of Physical Chemistry B, 2018, 12, 929-932.	1.3	1
32	Influence of Matrix Nature on the Structural Characteristics of In2O3–CeO2 and SnO2–CeO2 Composites Fabricated by the Impregnation Method. Russian Journal of Physical Chemistry B, 2018, 12, 709-713.	1.3	2
33	Symmetry of Pulsating Ratchets. JETP Letters, 2018, 107, 506-511.	1.4	15
34	Physicochemical and Electrophysical Properties of Metal/Semiconductor Containing Nanostructured Composites. Russian Journal of Physical Chemistry A, 2018, 92, 1087-1098.	0.6	1
35	Sensory properties of oxide films with high concentrations of conduction electrons. Russian Journal of Physical Chemistry A, 2017, 91, 572-576.	0.6	1
36	Drift of particles caused by fluctuations of their sizes. JETP Letters, 2017, 105, 335-340.	1.4	6

#	Article	IF	Citations
37	Sensor Effect in Oxide Films with a Large Concentration of Conduction Electrons. Journal of Physical Chemistry C, 2017, 121, 6940-6945.	3.1	11
38	Investigating the sensor response of ceria-containing binary metal oxide nanocomposites. Russian Journal of Physical Chemistry A, 2017, 91, 1976-1980.	0.6	1
39	Effect of electron transition kinetics on the photomotor velocity. Russian Journal of Physical Chemistry A, 2017, 91, 1951-1956.	0.6	1
40	Effect of the composition and structure of metal oxide nanocomposites on the sensor process when detecting reducing gases. Russian Journal of Physical Chemistry A, 2017, 91, 1609-1620.	0.6	5
41	Green light activated hydrogen sensing of nanocrystalline composite ZnO-ln2O3 films at room temperature. Scientific Reports, 2017, 7, 12204.	3.3	17
42	Peculiarities in the low-temperature specific heat related to nanoscale structural inhomogeneity in fine-crystalline YBa2Cu3O6.93 high-T c superconductors. JETP Letters, 2017, 105, 241-245.	1.4	6
43	Theory of slightly fluctuating ratchets. JETP Letters, 2017, 105, 542-547.	1.4	12
44	Suppression of the superconducting gap near d-wave nodes caused by the structural disorder in fine-crystalline YBa2Cu3Oy high-Tc superconductors. JETP Letters, 2017, 106, 378-383.	1.4	5
45	Absorption of Ultrashort Electromagnetic Pulses by ITO Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 28581-28586.	3.1	4
46	Conductivity of nanostructured India oxide films containing Co3O4 or ZrO2. Russian Journal of Physical Chemistry B, 2017, 11, 846-849.	1.3	2
47	Structural properties of metal oxide nanocomposites: Effect of preparation method. Russian Journal of Physical Chemistry B, 2016, 10, 543-546.	1.3	12
48	Absorption of Infrared Radiation by an Electronic Subsystem of Semiconductor Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 23851-23857.	3.1	10
49	Photoabsorption by the electron subsystem of a semiconductor nanoparticle. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2016, 121, 689-695.	0.6	0
50	Effect of electric field on the magnetic characteristics of a ferromagnetic nanosemiconductor. Journal of Experimental and Theoretical Physics, 2016, 123, 1068-1072.	0.9	5
51	Near-surface transport of semiconductor nanoclusters upon cyclic photoexcitation. Russian Journal of Physical Chemistry A, 2016, 90, 1484-1488.	0.6	2
52	Features of the electrical and photoelectrical properties of nanocrystalline indium and zinc oxide films. Russian Journal of Physical Chemistry B, 2016, 10, 810-815.	1.3	8
53	Change in the magnetic moment of a ferromagnetic nanoparticle under polarized current. Physics of the Solid State, 2016, 58, 266-272.	0.6	4
54	Simulation of the dielectric and conductive properties of metal-containing nanostructured composites. Russian Journal of Physical Chemistry B, 2015, 9, 748-753.	1.3	1

#	Article	IF	CITATIONS
55	Structure and physicochemical properties of nanostructured metal oxide films for use as the sensitive layer in gas sensors. Russian Journal of Physical Chemistry B, 2015, 9, 733-742.	1.3	17
56	Inhomogeneous Charge Distribution in Semiconductor Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 16286-16292.	3.1	29
57	Small CeO2 clusters on the surface of semiconductor nanoparticles. Russian Journal of Physical Chemistry A, 2015, 89, 1059-1064.	0.6	7
58	Tunneling transfer of atomic particles in chemical and biological reactions: The role of intermolecular vibrations and media reorganization. Russian Journal of Physical Chemistry A, 2014, 88, 1837-1848.	0.6	0
59	Influence of the load sign on characteristics of micro- and nanoscale steps in strain rate of \hat{I}^3 -irradiated polytetrafluoroethylene. Physics of the Solid State, 2014, 56, 2485-2492.	0.6	1
60	Single electronic traps in tin and zinc oxides. Nanotechnologies in Russia, 2014, 9, 151-156.	0.7	1
61	Remagnetization of a ferromagnetic nanoparticle induced by the current of polarized electrons. JETP Letters, 2014, 99, 210-213.	1.4	4
62	Sensor properties of the nanostructured In2O3-CeO2 system in detection of reducing gases. Russian Journal of Physical Chemistry A, 2014, 88, 503-508.	0.6	8
63	Sensory properties of nanostructured wide-band-gap semiconductor oxides: Effect of temperature and size of nanoparticles. Nanotechnologies in Russia, 2014, 9, 157-162.	0.7	0
64	Electronic structure of semiconductor and metal nanoparticles. Nanotechnologies in Russia, 2014, 9, 339-345.	0.7	0
65	Synthesis and Conductometric Property of Sol-Gel-Derived ZnO/PVP Nano Hybrid Films. Journal of Materials Engineering and Performance, 2013, 22, 911-915.	2.5	10
66	Mechanism of the conductivity and sensor response of nanostructured In2O3+ZnO films. Russian Journal of Physical Chemistry A, 2013, 87, 1731-1738.	0.6	4
67	Gas Semiconducting Sensors Based on Metal Oxide Nanocomposites. Journal of Materials Science Research, 2012, 1, .	0.1	15
68	Charge transfer in composites "dielectric + metal nanoparticles†Effect of electric and magnetic fields. International Journal of Quantum Chemistry, 2012, 112, 2904-2914.	2.0	2
69	Tunneling proton transfer in biological systems. Role of temperature and pressure. Russian Journal of Physical Chemistry A, 2012, 86, 1399-1406.	0.6	3
70	The optical and gas-sensitive properties of opal-like structures based on SnO2. Russian Journal of Physical Chemistry A, 2012, 86, 987-991.	0.6	0
71	Sensor effect theory for the detection of reducing gases. Russian Journal of Physical Chemistry A, 2012, 86, 1281-1287.	0.6	13
72	H-atom tunneling in biological reactions. Doklady Biochemistry and Biophysics, 2012, 442, 4-6.	0.9	0

#	Article	IF	Citations
73	Adsorption of oxygen and hydrogen at the surface of nanostructured SnO2 film. Nanotechnologies in Russia, 2012, 7, 122-126.	0.7	5
74	Sensors based on SnO2 + In2O3 composite films for detecting CO in air. Russian Journal of Physical Chemistry A, 2011, 85, 1021-1025.	0.6	3
75	Conductivity of SnO2-In2O3 nanocrystalline composite films. Russian Journal of Physical Chemistry A, 2010, 84, 1554-1559.	0.6	13
76	The sensor properties of SnO2 \hat{A} · In2O3 nanocomposite oxides in the detection of hydrogen in air. Russian Journal of Physical Chemistry A, 2010, 84, 2116-2121.	0.6	9
77	Conductivity of composites containing ferromagnetic nanoparticles: The role of a magnetic field. Journal of Experimental and Theoretical Physics, 2010, 111, 1010-1018.	0.9	5
78	Conductivity in a system of ferromagnetic nanoclusters: the influence of a magnetic field. Russian Journal of Physical Chemistry B, 2010, 4, 502-509.	1.3	1
79	Fluctuation effects in the solid-phase kinetics of diffusion-controlled radiation-chemical processes: A Monte Carlo simulation. High Energy Chemistry, 2010, 44, 261-267.	0.9	1
80	Sensor effect mechanisms in tin dioxide-based conductometric sensors for detection of reducing gases. Russian Journal of General Chemistry, 2009, 79, 2024-2032.	0.8	2
81	Simulation of the sorption of cations on the surface of a selective sorbent with allowance for the possibility of their desorption. Russian Journal of Physical Chemistry A, 2009, 83, 1807-1809.	0.6	1
82	The role of intermolecular vibrations and reorganization of a reaction system in tunneling reactions with H atom transfer. A Debye model for the medium. Russian Chemical Bulletin, 2008, 57, 1093-1105.	1.5	1
83	Adsorption of hydrogen on palladium film nanostructures. Russian Journal of Physical Chemistry A, 2008, 82, 1415-1418.	0.6	10
84	The sensor properties of Fe2O3 \hat{A} · In2O3 films: The detection of low ozone concentrations in air. Russian Journal of Physical Chemistry A, 2008, 82, 1721-1725.	0.6	7
85	Quantum Cryochemical Reactivity of Solids. Advances in Chemical Physics, 2007, , 349-437.	0.3	23
86	Pressure and Temperature Dependence of H-Atom Tunneling in the Debye Approximation. Barrier Preparation and Media Reorganization. Journal of Physical Chemistry A, 2007, 111, 9509-9515.	2.5	12
87	X-ray fluorescence analysis with sample excitation using radiation from a secondary target. X-Ray Spectrometry, 2007, 36, 270-274.	1.4	8
88	Modeling of the diffusion-kinetics-controlled adsorption of cations on a sorbent surface. Russian Journal of Physical Chemistry A, 2006, 80, 1617-1621.	0.6	1
89	Anomalous values of 〈Ŝ2〉 before and after annihilation of the first spin contaminant in UHF wave function. Journal of Structural Chemistry, 2005, 46, 195-203.	1.0	8
90	Synthesis of Aluminum Oxide Nanostructures on the Silicon Surface. High Energy Chemistry, 2005, 39, 330-332.	0.9	1

#	Article	IF	CITATIONS
91	Temperature and pressure dependences of tunneling rate constant: Density-functional theory potential-energy surface for H-atom transfer in the fluorene-acridine system. Journal of Chemical Physics, 2005, 123, 114508.	3.0	12
92	Metal-Containing Polymers: Cryochemical Synthesis, Structure, and Physicochemical Properties. , 2004, , 37-74.		6
93	Theory of Atom Tunneling Reactions in the Solid Phase. Springer Series on Atomic, Optical, and Plasma Physics, 2004, , 33-58.	0.2	10
94	Hydrogen Atom Tunneling in a Fluorene–Acridine System: Effect of the Reactant Reorganization. Russian Journal of Electrochemistry, 2003, 39, 37-43.	0.9	2
95	Quantum chemistry of ferroelectric solids: Electronic structures and peculiar behavior of zero-dimensional K3H(SO4)2-like materials. International Journal of Quantum Chemistry, 2002, 88, 463-471.	2.0	11
96	Temperature dependence of cryochemical H-tunneling reactions. Journal of Chemical Physics, 2000, 113, 1992-2002.	3.0	36
97	Temperature dependence of the rate constants of cryochemical reactions. Russian Chemical Bulletin, 1999, 48, 1882-1890.	1.5	2
98	Vibrationâ€assisted intermolecular hydrogen tunneling in photoreactive doped molecular crystals: Effect of temperature and pressure. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 498-503.	0.9	21
99	Preliminary Study of the Interaction of Metal Nanoparticle-containing Poly-p-xylylene films With Ammonia. Analytical Communications, 1997, 34, 113-114.	2.2	24
100	Polychronic Kinetics of Chemical Reactions with the Blending of Rate Constants. Journal of Physical Chemistry B, 1997, 101, 10024-10027.	2.6	9
101	Polychronous kinetics with nonstationary rate constants. Effect of a medium. Russian Chemical Bulletin, 1997, 46, 448-455.	1.5	3
102	Tunnel modes and kinetic properties of glasses at low and high temperatures. Journal of Physics C: Solid State Physics, 1986, 19, 5529-5553.	1.5	10
103	Atomic excitation by a simultaneous collision with another atom and with a photon. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1972, 15, 1293-1297.	0.0	O