DaeYong Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9613825/publications.pdf Version: 2024-02-01

DAFYONGLEE

#	Article	lF	CITATIONS
1	Protease-activatable cell-penetrating peptide possessing ROS-triggered phase transition for enhanced cancer therapy. Journal of Controlled Release, 2017, 264, 89-101.	9.9	83
2	Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nature Nanotechnology, 2022, 17, 891-899.	31.5	74
3	Bioreducible branched poly(modified nona-arginine) cell-penetrating peptide as a novel gene delivery platform. Journal of Controlled Release, 2017, 246, 142-154.	9.9	60
4	Harnessing Innate Immunity Using Biomaterials for Cancer Immunotherapy. Advanced Materials, 2021, 33, e2007576.	21.0	42
5	Establishment of a controlled insulin delivery system using a glucose-responsive double-layered nanogel. RSC Advances, 2015, 5, 14482-14491.	3.6	40
6	A branched TAT cell-penetrating peptide as a novel delivery carrier for the efficient gene transfection. Biomaterials Research, 2016, 20, 28.	6.9	27
7	A Helical Polypeptideâ€Based Potassium Ionophore Induces Endoplasmic Reticulum Stressâ€Mediated Apoptosis by Perturbing Ion Homeostasis. Advanced Science, 2019, 6, 1801995.	11.2	24
8	pH-controllable cell-penetrating polypeptide that exhibits cancer targeting. Acta Biomaterialia, 2017, 57, 187-196.	8.3	19
9	Structure-inherent near-infrared bilayer nanovesicles for use as photoacoustic image-guided chemo-thermotherapy. Journal of Controlled Release, 2020, 320, 283-292.	9.9	17
10	Development of apoptosis-inducing polypeptide via simultaneous mitochondrial membrane disruption and Ca2+ delivery. Biomaterials, 2019, 197, 51-59.	11.4	15
11	Stimuli-Responsive Polypeptides for Biomedical Applications. Polymers, 2018, 10, 830.	4.5	13
12	Conformation-switchable helical polypeptide eliciting selective pro-apoptotic activity for cancer therapy. Journal of Controlled Release, 2017, 264, 24-33.	9.9	8
13	Polypeptide-Based K+ Ionophore as a Strong Immunogenic Cell Death Inducer for Cancer Immunotherapy. ACS Applied Bio Materials, 2021, 4, 8333-8342.	4.6	3
14	Strategies of Perturbing Ion Homeostasis for Cancer Therapy. Advanced Therapeutics, 2022, 5, 2100189.	3.2	3
15	Harnessing cGAS TING Pathway for Cancer Immunotherapy: From Bench to Clinic. Advanced Therapeutics, 2022, 5,	3.2	2
16	Drug Development: A Helical Polypeptideâ€Based Potassium Ionophore Induces Endoplasmic Reticulum Stressâ€Mediated Apoptosis by Perturbing Ion Homeostasis (Adv. Sci. 14/2019). Advanced Science, 2019, 6, 1970087.	11.2	1
17	Cancer nanomedicines for enhanced immunotherapy. , 2022, , .		0