Jan Carmeliet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9612808/publications.pdf

Version: 2024-02-01

44 papers 1,999 citations

236925 25 h-index 243625 44 g-index

44 all docs

44 docs citations

times ranked

44

1694 citing authors

#	Article	IF	CITATIONS
1	Hygromechanics of softwood cellulosic nanocomposite with intermolecular interactions at fiber-matrix interface investigated with molecular dynamics. Composites Part B: Engineering, 2022, 228, 109449.	12.0	16
2	Impact of green walls on ventilation and heat removal from street canyons: Coupling of thermal and aerodynamic resistance. Building and Environment, 2022, 214, 108945.	6.9	29
3	Wicking dynamics in yarns. Journal of Colloid and Interface Science, 2022, 625, 1-11.	9.4	7
4	A Dynamic Pore Network Model for Imbibition Simulation Considering Corner Film Flow. Water Resources Research, 2022, 58, .	4.2	6
5	Wicking through complex interfaces at interlacing yarns. Journal of Colloid and Interface Science, 2022, 626, 416-425.	9.4	3
6	Smart wetting of permeable pavements as an evaporative-cooling measure for improving the urban climate during heat waves. Journal of Building Physics, 2021, 45, 36-66.	2.4	21
7	Four-dimensional imaging and free-energy analysis of sudden pore-filling events in wicking of yarns. Physical Review E, 2021, 103, 053101.	2.1	9
8	Scaling of buoyancy-driven flows on a horizontal plate subject to a ramp heating of a finite time. International Journal of Heat and Mass Transfer, 2021, 171, 121061.	4.8	5
9	Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. Science Advances, 2021, 7, eabi8919.	10.3	18
10	Urban Heat Island and Its Interaction with Heatwaves: A Review of Studies on Mesoscale. Sustainability, 2021, 13, 10923.	3.2	49
11	Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada. Buildings, 2021, 11, 476.	3.1	7
12	Natural convection over vertical and horizontal heated flat surfaces: A review of recent progress focusing on underpinnings and implications for heat transfer and environmental applications. Physics of Fluids, 2021, 33, .	4.0	36
13	Towards unraveling the moisture-induced shape memory effect of wood: the role of interface mechanics revealed by upscaling atomistic to composite modeling. NPG Asia Materials, 2021, 13, .	7.9	6
14	Moisture-induced crossover in the thermodynamic and mechanical response of hydrophilic biopolymer. Cellulose, 2020, 27, 89-99.	4.9	13
15	Improved pore network models to simulate single-phase flow in porous media by coupling with lattice Boltzmann method. Advances in Water Resources, 2020, 145, 103738.	3.8	39
16	Advancement in Urban Climate Modelling at Local Scale: Urban Heat Island Mitigation and Building Cooling Demand. Atmosphere, 2020, 11, 1313.	2.3	33
17	Role of cellulose nanocrystals on hysteretic sorption and deformation of nanocomposites. Cellulose, 2020, 27, 6945-6960.	4.9	6
18	COSMO-BEP-Tree v1.0: a coupled urban climate model with explicit representation of street trees. Geoscientific Model Development, 2020, 13, 1685-1710.	3.6	37

#	Article	IF	Citations
19	Assessment of risk of freeze-thaw damage in internally insulated masonry in a changing climate. Building and Environment, 2020, 175, 106773.	6.9	24
20	Simulation of quasi-static drainage displacement in porous media on pore-scale: Coupling lattice Boltzmann method and pore network model. Journal of Hydrology, 2020, 588, 125080.	5.4	48
21	Two-stage wicking of yarns at the fiber scale investigated by synchrotron X-ray phase-contrast fast tomography. Textile Reseach Journal, 2019, 89, 4967-4979.	2.2	8
22	Study of non-isothermal liquid evaporation in synthetic micro-pore structures with hybrid lattice Boltzmann model. Journal of Fluid Mechanics, 2019, 866, 33-60.	3.4	53
23	Impact of drying methods on the changes of fruit microstructure unveiled by X-ray micro-computed tomography. RSC Advances, 2019, 9, 10606-10624.	3.6	19
24	Modeling wicking in textiles using the dual porosity approach. Textile Reseach Journal, 2019, 89, 3519-3528.	2.2	9
25	Parametric study of the influence of environmental factors and tree properties on the transpirative cooling effect of trees. Agricultural and Forest Meteorology, 2018, 248, 259-274.	4.8	79
26	Role of hydrogen bonding in hysteresis observed in sorption-induced swelling of soft nanoporous polymers. Nature Communications, 2018, 9, 3507.	12.8	101
27	Impact of hydration on the micromechanical properties of the polymer composite structure of wood investigated with atomistic simulations. Journal of the Mechanics and Physics of Solids, 2017, 103, 221-235.	4.8	28
28	Hygrothermal modeling and evaluation of freeze-thaw damage risk of masonry walls retrofitted with internal insulation. Building and Environment, 2017, 125, 285-298.	6.9	57
29	Dynamic Wicking Process in Textiles. Transport in Porous Media, 2017, 119, 611-632.	2.6	42
30	Moisture adsorption of glucomannan and xylan hemicelluloses. Cellulose, 2016, 23, 1629-1637.	4.9	38
31	Robust moisture reference year methodology for hygrothermal simulations. Building and Environment, 2016, 110, 23-35.	6.9	50
32	Poroelastic model for adsorption-induced deformation of biopolymers obtained from molecular simulations. Physical Review E, 2015, 92, 022605.	2.1	33
33	Impact of Moisture Adsorption on Structure and Physical Properties of Amorphous Biopolymers. Macromolecules, 2015, 48, 2793-2800.	4.8	72
34	Poromechanical modeling of moisture induced swelling anisotropy in cellular tissues of softwoods. RSC Advances, 2015, 5, 3560-3566.	3.6	8
35	Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. Journal of the Royal Society Interface, 2014, 11, 20140126.	3.4	60
36	3D Virtual Pome Fruit Tissue Generation Based on Cell Growth Modeling. Food and Bioprocess Technology, 2014, 7, 542-555.	4.7	27

#	ARTICLE	IF	CITATION
37	A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose. Cellulose, 2014, 21, 1103-1116.	4.9	122
38	Novel Application of Neutron Radiography to Forced Convective Drying of Fruit Tissue. Food and Bioprocess Technology, 2013, 6, 3353-3367.	4.7	23
39	Influence of the urban microclimate in street canyons on the energy demand for space cooling and heating of buildings. Energy and Buildings, 2012, 55, 823-832.	6.7	137
40	Impact of wind on the spatial distribution of rain over micro-scale topography: numerical modelling and experimental verification. Hydrological Processes, 2006, 20, 345-368.	2.6	47
41	High-resolution wind-driven rain measurements on a low-rise buildingâ€"experimental data for model development and model validation. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93, 905-928.	3.9	84
42	A review of wind-driven rain research in building science. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92, 1079-1130.	3.9	346
43	A Network Modeling Approach to Derive Unsaturated Hydraulic Properties of a Rough-Walled Fracture. Transport in Porous Media, 2003, 50, 197-221.	2.6	20
44	Spatial and temporal distribution of driving rain on a low-rise building. Wind and Structures, an International Journal, 2002, 5, 441-462.	0.8	124