Yanna Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9612084/publications.pdf Version: 2024-02-01

VANNA SUN

#	Article	IF	CITATIONS
1	Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nature Electronics, 2019, 2, 513-520.	13.1	255
2	Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11%. Advanced Materials, 2018, 30, e1707508.	11.1	184
3	Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter, 2022, 5, 725-734.	5.0	145
4	A New Nonfullerene Acceptor with Near Infrared Absorption for High Performance Ternaryâ€Blend Organic Solar Cells with Efficiency over 13%. Advanced Science, 2018, 5, 1800307.	5.6	111
5	Flexible Organic Solar Cells: Progress and Challenges. Small Science, 2021, 1, 2100001.	5.8	94
6	Achieving Both Enhanced Voltage and Current through Fine‶uning Molecular Backbone and Morphology Control in Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901024.	10.2	73
7	The rational and effective design of nonfullerene acceptors guided by a semi-empirical model for an organic solar cell with an efficiency over 15%. Journal of Materials Chemistry A, 2020, 8, 9726-9732.	5.2	54
8	A Direct C–H Coupling Method for Preparing π-Conjugated Functional Polymers with High Regioregularity. Macromolecules, 2018, 51, 379-388.	2.2	39
9	A solution-processed nanoscale COF-like material towards optoelectronic applications. Science China Chemistry, 2021, 64, 82-91.	4.2	38
10	A simple small molecule as the acceptor for fullerene-free organic solar cells. Science China Chemistry, 2017, 60, 366-369.	4.2	29
11	Design and synthesis of low band gap non-fullerene acceptors for organic solar cells with impressively high Jsc over 21 mA cm_2. Science China Materials, 2017, 60, 819-828.	3.5	29
12	Flexible Highâ€Performance and Solutionâ€Processed Organic Photovoltaics with Robust Mechanical Stability. Advanced Functional Materials, 2021, 31, 2010000.	7.8	29
13	Developing high-performance small molecule organic solar cells via a large planar structure and an electron-withdrawing central unit. Chemical Communications, 2017, 53, 451-454.	2.2	22
14	An all small molecule organic solar cell based on a porphyrin donor and a non-fullerene acceptor with complementary and broad absorption. Dyes and Pigments, 2020, 176, 108250.	2.0	20
15	Solid-state electrolytes from polysulfide integrated polyvinylpyrrolidone for quantum dot-sensitized solar cells. RSC Advances, 2014, 4, 60478-60483.	1.7	18
16	Concurrently Improved <i>J</i> _{sc} , Fill Factor, and Stability in a Ternary Organic Solar Cell Enabled by a C-Shaped Non-fullerene Acceptor and Its Structurally Similar Third Component. ACS Applied Materials & Interfaces, 2021, 13, 40766-40777.	4.0	18
17	Subtle Morphology Control with Binary Additives for High-Efficiency Non-Fullerene Acceptor Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 27425-27432.	4.0	16
18	An oxygen heterocycle-fused fluorene based non-fullerene acceptor for high efficiency organic solar cells. Materials Chemistry Frontiers, 2020, 4, 3594-3601.	3.2	15

Yanna Sun

#	Article	IF	CITATIONS
19	All-Small-Molecule Organic Solar Cells Based on a Fluorinated Small Molecule Donor With High Open-Circuit Voltage of 1.07 V. Frontiers in Chemistry, 2020, 8, 329.	1.8	15
20	Fluorination-modulated end units for high-performance non-fullerene acceptors based organic solar cells. Science China Materials, 2019, 62, 1210-1217.	3.5	14
21	Simultaneously Enhanced Efficiency and Mechanical Durability in Ternary Solar Cells Enabled by Low ost Incompletely Separated Fullerenes. Macromolecular Rapid Communications, 2022, 43, e2200139.	2.0	14
22	Improving current and mitigating energy loss in ternary organic photovoltaics enabled by two well-compatible small molecule acceptors. Science China Chemistry, 2021, 64, 608-615.	4.2	13
23	An A2–Ĩ€â€"A1–Ĩ€â€"A2-type small molecule donor for high-performance organic solar cells. Journal of Materials Chemistry C, 2019, 7, 5381-5384.	2.7	12
24	Efficient carbazole-based small-molecule organic solar cells with an improved fill factor. RSC Advances, 2018, 8, 4867-4871.	1.7	11
25	A-D-A-type small molecular acceptor with one hexyl-substituted thiophene as π bridge for fullerene-free organic solar cells. Science China Materials, 2017, 60, 49-56.	3.5	10
26	Dithienosilole-based small molecule donors for efficient all-small-molecule organic solar cells. Dyes and Pigments, 2018, 158, 445-450.	2.0	8
27	Structural optimization of acceptor molecules guided by a semi-empirical model for organic solar cells with efficiency over 15%. Science China Materials, 2021, 64, 2388-2396.	3.5	6
28	An Efficient Ternary Organic Solar Cell with a Porphyrin Based Small Molecule Donor and Two Fullerene Acceptors. Chinese Journal of Organic Chemistry, 2018, 38, 228.	0.6	3
29	Single-junction organic solar cell smashes performance record. Science China Materials, 2022, 65, 2609-2610.	3.5	2