

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/96119/publications.pdf Version: 2024-02-01

на Гиг

#	Article	IF	CITATIONS
1	Bismuth Single Atoms Resulting from Transformation of Metal–Organic Frameworks and Their Use as Electrocatalysts for CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 16569-16573.	6.6	501
2	Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities. ACS Applied Materials & Interfaces, 2015, 7, 19408-19415.	4.0	330
3	Electromagnetic Property and Tunable Microwave Absorption of 3D Nets from Nickel Chains at Elevated Temperature. ACS Applied Materials & Interfaces, 2016, 8, 22615-22622.	4.0	307
4	Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride). Journal of Materials Chemistry A, 2013, 1, 4685.	5.2	264
5	Controllable fabrication of mono-dispersed RGO–hematite nanocomposites and their enhanced wave absorption properties. Journal of Materials Chemistry A, 2013, 1, 5996.	5.2	251
6	Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. Journal of Materials Chemistry C, 2015, 3, 4670-4677.	2.7	224
7	Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chemical Reviews, 2020, 120, 2123-2170.	23.0	206
8	Catalytic nanoarchitectonics for environmentally compatible energy generation. Materials Today, 2016, 19, 12-18.	8.3	163
9	Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. Journal of Materials Chemistry C, 2014, 2, 5057-5064.	2.7	159
10	Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water. Applied Catalysis B: Environmental, 2021, 293, 120213.	10.8	123
11	Metal@semiconductor core-shell nanocrystals with atomically organized interfaces for efficient hot electron-mediated photocatalysis. Nano Energy, 2018, 48, 44-52.	8.2	118
12	Polystyrene sulphonic acid resins with enhanced acid strength via macromolecular self-assembly within confined nanospace. Nature Communications, 2014, 5, 3170.	5.8	114
13	Nature-Inspired Na ₂ Ti ₃ O ₇ Nanosheets-Formed Three-Dimensional Microflowers Architecture as a High-Performance Anode Material for Rechargeable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 11669-11677.	4.0	103
14	Improved dielectric properties and highly efficient and broadened bandwidth electromagnetic attenuation of thickness-decreased carbon nanosheet/wax composites. Journal of Materials Chemistry C, 2013, 1, 1846.	2.7	98
15	Two-Dimensional All-in-One Sulfide Monolayers Driving Photocatalytic Overall Water Splitting. Nano Letters, 2021, 21, 6228-6236.	4.5	88
16	Efficient Plasmonic Au/CdSe Nanodumbbell for Photoelectrochemical Hydrogen Generation beyond Visible Region. Advanced Energy Materials, 2019, 9, 1803889.	10.2	85
17	Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Research, 2017, 10, 1595-1607.	5.8	82
18	Cation/Anion Exchange Reactions toward the Syntheses of Upgraded Nanostructures: Principles and Applications. Matter, 2020, 2, 554-586.	5.0	81

#	Article	IF	CITATIONS
19	Enzyme confined in silica-based nanocages for biocatalysis in a Pickering emulsion. Chemical Communications, 2013, 49, 9558.	2.2	66
20	"Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods―A review. Analytica Chimica Acta, 2020, 1101, 9-22.	2.6	66
21	Hydrothermal Cation Exchange Enabled Gradual Evolution of Au@ZnS–AgAuS Yolk–Shell Nanocrystals and Their Visible Light Photocatalytic Applications. Advanced Science, 2018, 5, 1700376.	5.6	64
22	Hydrophilic Doped Quantum Dots "Ink―and Their Inkjetâ€Printed Patterns for Dual Mode Anticounterfeiting by Reversible Cation Exchange Mechanism. Advanced Functional Materials, 2019, 29, 1808762.	7.8	63
23	Ultrathin single-crystalline TiO2 nanosheets anchored on graphene to be hybrid network for high-rate and long cycle-life sodium battery electrode application. Journal of Power Sources, 2017, 342, 405-413.	4.0	60
24	Heterovalent Doping in Colloidal Semiconductor Nanocrystals: Cation-Exchange-Enabled New Accesses to Tuning Dopant Luminescence and Electronic Impurities. Journal of Physical Chemistry Letters, 2017, 8, 4943-4953.	2.1	59
25	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution by Plasmonic Au/CdSe–Cu ₂ O Hierarchical Nanostructures under Visible Light. Small, 2020, 16, e2000426.	5.2	53
26	Sintering-Resistant Nanoparticles in Wide-Mouthed Compartments for Sustained Catalytic Performance. Scientific Reports, 2017, 7, 41773.	1.6	44
27	Improved Catalytic Performance of Lipase Accommodated in the Mesoporous Silicas with Polymer-Modified Microenvironment. Langmuir, 2012, 28, 9788-9796.	1.6	42
28	Electronic doping-enabled transition from n- to p-type conductivity over Au@CdS core–shell nanocrystals toward unassisted photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 23038-23045.	5.2	42
29	Antibacterial Effect of Silver-Incorporated Flake-Shell Nanoparticles under Dual-Modality. ACS Applied Materials & Interfaces, 2016, 8, 18922-18929.	4.0	40
30	Evolution of Hollow CuInS ₂ Nanododecahedrons via Kirkendall Effect Driven by Cation Exchange for Efficient Solar Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 27170-27177.	4.0	40
31	Au@HgxCd1-xTe core@shell nanorods by sequential aqueous cation exchange for near-infrared photodetectors. Nano Energy, 2019, 57, 57-65.	8.2	38
32	Towards efficient chemical synthesis via engineering enzyme catalysis in biomimetic nanoreactors. Chemical Communications, 2015, 51, 13731-13739.	2.2	36
33	Controlled Synthesis and Flexible Self-Assembly of Monodisperse Au@Semiconductor Core/Shell Hetero-Nanocrystals into Diverse Superstructures. Chemistry of Materials, 2017, 29, 2355-2363.	3.2	33
34	Versatile synthesis of yolk/shell hybrid nanocrystals via ion-exchange reactions for novel metal/semiconductor and semiconductor/semiconductor conformations. Nano Research, 2017, 10, 2977-2987.	5.8	32
35	Fabrication of core–shell structured mesoporous silica nanospheres with dually oriented mesochannels through pore engineering. Journal of Materials Chemistry A, 2014, 2, 8118-8125.	5.2	30
36	Enhanced thermostability of enzymes accommodated in thermo-responsive nanopores. Chemical Science, 2012, 3, 3398.	3.7	29

#	Article	IF	CITATIONS
37	Enzyme Entrapped in Polymerâ€Modified Nanopores: The Effects of Macromolecular Crowding and Surface Hydrophobicity. Chemistry - A European Journal, 2013, 19, 2711-2719.	1.7	29
38	Domain Structure and Enhanced Electrical Properties in Sodium Bismuth Titanate Ceramics Sintered from Crystals with Different Morphologies. Journal of the American Ceramic Society, 2016, 99, 2316-2326.	1.9	29
39	Semiconductor Nanocrystal Engineering by Applying Thiol―and Solventâ€Coordinated Cation Exchange Kinetics. Angewandte Chemie - International Edition, 2019, 58, 4852-4857.	7.2	29
40	A flexible conductive film prepared by the oriented stacking of Ag and Au/Ag alloy nanoplates and its chemically roughened surface for explosive SERS detection and cell adhesion. RSC Advances, 2017, 7, 7073-7078.	1.7	28
41	Simultaneous harnessing of hot electrons and hot holes achieved via n-metal-p Janus plasmonic heteronanocrystals. Nano Energy, 2022, 98, 107217.	8.2	26
42	From core-shell to yolk-shell: Keeping the intimately contacted interface for plasmonic metal@semiconductor nanorods toward enhanced near-infrared photoelectrochemical performance. Nano Research, 2020, 13, 1162-1170.	5.8	25
43	Cu x O self-assembled mesoporous microspheres with effective surface oxygen vacancy and their room temperature NO2 gas sensing performance. Science China Materials, 2018, 61, 1085-1094.	3.5	24
44	Atomically thin PdSeO ₃ nanosheets: a promising 2D photocatalyst produced by quaternary ammonium intercalation and exfoliation. Chemical Communications, 2020, 56, 5504-5507.	2.2	23
45	Good Dispersion of Large-Stokes-Shift Heterovalent-Doped CdX Quantum Dots into Bulk PMMA Matrix and Their Optical Properties Characterization. Journal of Physical Chemistry C, 2017, 121, 6152-6159.	1.5	22
46	Compressive surface strained atomic-layer Cu2O on Cu@Ag nanoparticles. Nano Research, 2019, 12, 1187-1192.	5.8	21
47	Porous platinum–silver bimetallic alloys: surface composition and strain tunability toward enhanced electrocatalysis. Nanoscale, 2018, 10, 21703-21711.	2.8	20
48	Metal@I ₂ –II–IV–VI ₄ core–shell nanocrystals: controlled synthesis by aqueous cation exchange for efficient photoelectrochemical hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 11898-11908.	5.2	20
49	From Indiumâ€Doped Ag ₂ S to AgInS ₂ Nanocrystals: Lowâ€Temperature In Situ Conversion of Colloidal Ag ₂ S Nanoparticles and Their NIR Fluorescence. Chemistry - A European Journal, 2018, 24, 13676-13680.	1.7	20
50	Phosphine ligand-mediated kinetics manipulation of aqueous cation exchange: a case study on the synthesis of Au@SnS _x core–shell nanocrystals for photoelectrochemical water splitting. Chemical Communications, 2018, 54, 9993-9996.	2.2	19
51	Unique Cation Exchange in Nanocrystal Matrix via Surface Vacancy Engineering Overcoming Chemical Kinetic Energy Barriers. CheM, 2020, 6, 3086-3099.	5.8	18
52	High-Performance Quantum Dots with Synergistic Doping and Oxide Shell Protection Synthesized by Cation Exchange Conversion of Ternary-Composition Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 2606-2615.	2.1	17
53	Hollow anisotropic semiconductor nanoprisms with highly crystalline frameworks for high-efficiency photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 8061-8072.	5.2	16
54	Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection. Nano Research, 2019, 12, 1375-1379.	5.8	16

#	Article	IF	CITATIONS
55	An immobilization enzyme for screening lipase inhibitors from Tibetan medicines. Journal of Chromatography A, 2020, 1615, 460711.	1.8	16
56	Ru-Co-Mn trimetallic alloy nanocatalyst driving bifunctional redox electrocatalysis. Science China Materials, 2022, 65, 131-138.	3.5	16
57	Hierarchical Self-Assembly of Cu ₇ Te ₅ Nanorods into Superstructures with Enhanced SERS Performance. ACS Applied Materials & Interfaces, 2016, 8, 35426-35434.	4.0	15
58	Construction of Plasmonic Metal@Semiconductor Core–Shell Photocatalysts: From Epitaxial to Nonepitaxial Strategies. Small Structures, 2022, 3, .	6.9	13
59	Surface passivation enabled-structural engineering of I-III-VI ₂ nanocrystal photocatalysts. Journal of Materials Chemistry A, 2020, 8, 9951-9962.	5.2	12
60	Shell Thickness Dependence of the Plasmon-Induced Hot-Electron Injection Process in Au@CdS Core–Shell Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 19906-19913.	1.5	12
61	Efficient Co3O4/SiO2 catalyst for the Baeyer–Villiger oxidation of cyclohexanone. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112, 159-171.	0.8	11
62	Colloidâ€Interfaceâ€Assisted Laser Irradiation of Nanocrystals Superlattices to be Scalable Plasmonic Superstructures with Novel Activities. Small, 2018, 14, e1703501.	5.2	10
63	Micro-scale 2D quasi-nanosheets formed by 0D nanocrystals: from single to multicomponent building blocks. Science China Materials, 2020, 63, 1265-1271.	3.5	10
64	Lipase immobilization on magnetic cellulose microspheres for rapid screening inhibitors from traditional herbal medicines. Talanta, 2021, 231, 122374.	2.9	10
65	Cu nanocrystal enhancement of C ₃ N ₄ /Cu hetero-structures and new applications in photo-electronic catalysis: hydrazine oxidation and redox reactions of organic molecules. Inorganic Chemistry Frontiers, 2018, 5, 2420-2424.	3.0	9
66	Defect Engineering in 2D Photocatalytic Materials for CO ₂ Reduction. ChemNanoMat, 2021, 7, 737-747.	1.5	9
67	Semiconductor Nanocrystal Engineering by Applying Thiol―and Solventâ€Coordinated Cation Exchange Kinetics. Angewandte Chemie, 2019, 131, 4906-4911.	1.6	8
68	Stable quantum dots/polymer matrix and their versatile 3D printing frameworks. Journal of Materials Chemistry C, 2021, 9, 7194-7199.	2.7	8
69	A telluride shell on plasmonic Au nanoparticles: amorphous/crystalline phase and shape evolution engineering <i>via</i> aqueous cation exchange. Materials Chemistry Frontiers, 2021, 5, 4571-4578.	3.2	8
70	Perovskite nanocrystals: across-dimensional attachment, film-scale assembly on a flexible substrate and their fluorescence properties. Nanotechnology, 2018, 29, 125606.	1.3	6
71	Nanoclusterâ€Mediated Synthesis of Diverse ZnTe Nanostructures: from Nanocrystals to 1D Nanobelts. Chemistry - A European Journal, 2018, 24, 2999-3004.	1.7	5
72	Nearâ€Infrared Luminescent Ternary Ag ₃ SbS ₃ Quantum Dots by in situ Conversion of Ag Nanocrystals with Sb(C ₉ H ₁₉ COOS) ₃ . Chemistry - A European Journal, 2018, 24, 18643-18647.	1.7	5

#	Article	IF	CITATIONS
73	High Pressure Induced in Situ Solid-State Phase Transformation of Nonepitaxial Grown Metal@Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 6544-6549.	2.1	5
74	Doping transition metal in PdSeO3 atomic layers by aqueous cation exchange: A new doping protocol for a new 2D photocatalyst. Chinese Chemical Letters, 2022, 33, 3739-3744.	4.8	5
75	Synergistically Modulating Geometry and Electronic Structures of a Chalcogenide Photocatalyst via an Ion-Exchange Strategy. Journal of Physical Chemistry Letters, 2022, 13, 969-976.	2.1	5
76	Model Iron Phosphate Catalysts for the Oxy-bromination of Methane. Catalysis Letters, 2014, 144, 1384-1392.	1.4	4
77	Assembly-promoted photocatalysis: Three-dimensional assembly of CdS x Se 1â^x (xÂ=Â0–1) quantum dots into nanospheres with enhanced photocatalytic performance. Journal of Materiomics, 2017, 3, 63-70.	2.8	3
78	Two-dimensional CdX (X = Se, Te) nanosheets: controlled synthesis and their photoluminescence properties. Journal of Materials Chemistry C, 2019, 7, 13849-13858.	2.7	3
79	Hollow urchin-shaped manganese dioxide microspheres immobilized acetylcholinesterase for rapid screening inhibitors from traditional herbal medicines. Journal of Chromatography A, 2022, 1665, 462824.	1.8	3
80	Wet-Phase Synthesis of Typical Magnetic Nanoparticles with Controlled Morphologies. , 2017, , 291-326.		1