
Kazuhiko Nakano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9610362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Milling characteristics and distribution of phytic acid and zinc in long-, medium- and short-grain rice. Journal of Cereal Science, 2008, 48, 83-91.	3.7	92
2	Depth Elemental Imaging of Forensic Samples by Confocal micro-XRF Method. Analytical Chemistry, 2011, 83, 3477-3483.	6.5	77
3	Nondestructive elemental depth profiling of Japanese lacquerware â€ [~] Tamamushiâ€nuri' by confocal 3Dâ€XRF analysis in comparison with micro GEâ€XRF. X-Ray Spectrometry, 2009, 38, 446-450.	1.4	52
4	Development of confocal micro X-ray fluorescence instrument using two X-ray beams. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 549-553.	2.9	50
5	Development of confocal 3D micro-XRF spectrometer with dual CrMo excitation. X-Ray Spectrometry, 2007, 36, 145-149.	1.4	46
6	X-ray Spectrometry. Analytical Chemistry, 2012, 84, 636-668.	6.5	42
7	Development of a new confocal 3D-XRF instrument with an X-ray tube. Journal of Analytical Atomic Spectrometry, 2011, 26, 305-309.	3.0	41
8	X-ray fluorescence analysis of trace metals in environmental water using preconcentration with an iminodiacetate extraction disk. X-Ray Spectrometry, 2006, 35, 184-189.	1.4	39
9	Development of laboratory confocal 3D-XRF spectrometer and nondestructive depth profiling. Journal of Analytical Atomic Spectrometry, 2010, 25, 562.	3.0	33
10	Preparation of calibrating standards for x-ray fluorescence spectrometry of trace metals in plastics. X-Ray Spectrometry, 2003, 32, 452-457.	1.4	32
11	Application of Confocal 3D Micro-XRF for Solid/Liquid Interface Analysis. Analytical Sciences, 2008, 24, 99-103.	1.6	32
12	Preparation and Certification of the New Reference Materials; Plastics (Disk Form, JSAC 0621 - 0625) for Determination of Mercury Using X-Ray Fluorescent Analysis. Analytical Sciences, 2006, 22, 1265-1268.	1.6	25
13	X-ray Spectrometry. Analytical Chemistry, 2008, 80, 4421-4454.	6.5	23
14	Development of Confocal 3D Micro XRF Spectrometer and Its Application to Rice Grain. Bunseki Kagaku, 2006, 55, 427-432.	0.2	18
15	X-ray Spectrometry. Analytical Chemistry, 2010, 82, 4950-4987.	6.5	18
16	Development of a transportable µâ€XRF spectrometer with polycapillary half lens. X-Ray Spectrometry, 2010, 39, 78-82.	1.4	16
17	Plastic Certified Reference Materials JSAC 0611-0615 for Determination of Hazardous Constituents Using X-Ray Fluorescent Analysis. Bunseki Kagaku, 2006, 55, 501-507.	0.2	15
18	Chemical Interaction of well Composite Samples with Supercritical CO2 along the Cement - Sandstone Interface. Energy Procedia, 2014, 63, 5754-5761.	1.8	14

ΚΑΖUΗΙΚΟ ΝΑΚΑΝΟ

#	Article	IF	CITATIONS
19	Self-sealing of Wellbore Cement under the CO2 Batch Experiment Using Well Composite Sample. Energy Procedia, 2017, 114, 5212-5218.	1.8	14
20	Improvement of spatial resolution of µâ€XRF by using a thin metal filter. X-Ray Spectrometry, 2008, 37, 642-645.	1.4	13
21	X-ray Energy Dependence of the Properties of the Focused Beams Produced by Polycapillary X-ray Lens. Analytical Sciences, 2008, 24, 843-846.	1.6	13
22	Visualizing a black cat drawing hidden inside the painting by confocal micro-XRF analysis. Microchemical Journal, 2016, 126, 496-500.	4.5	12
23	X-ray fluorescence analysis of soft materials using needle-type collimators enabling greater tolerance in analysis depth. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 460-464.	2.9	10
24	Preparation and Certification of the New Certified Reference Materials, Plastics (JSAC 0601-1, JSAC) Tj ETQq0 0	0 rgBT /Ov	verlgck 10 Tf 5
25	Micro total reflection x-ray fluorescence (µ-TXRF) analysis. X-Ray Spectrometry, 2006, 35, 375-378.	1.4	9
26	Fundamental characteristics of polycapillary xâ€ray optics combined with glass conical pinhole for micro xâ€ray fluorescence spectrometry. X-Ray Spectrometry, 2009, 38, 258-262.	1.4	9
27	Potential Anthropogenic Pollution by Eu as well as Gd Observed in River Water around Urban Area. Chemistry Letters, 2017, 46, 1327-1329.	1.3	9
28	Development of the Certified Reference Materials, Plastics (JSAC 0631, JSAC 0632) for Determination of Hazardous Metals by X-Ray Fluorescence Analysis. Bunseki Kagaku, 2007, 56, 363-370.	0.2	8
29	Development of Certified Reference Materials, Plastics (JSAC 0651-0655) for Determination of Bromine Using X-Ray Fluorescence Analysis. Bunseki Kagaku, 2008, 57, 469-475.	0.2	7
30	Preconcentration of environmental waters by agar for XRF analysis. Powder Diffraction, 2009, 24, 135-139.	0.2	7
31	Fundamental characteristics of hybrid X-ray focusing optics for micro X-ray fluorescence analysis. Nuclear Instruments & Methods in Physics Research B, 2013, 309, 260-263.	1.4	7
32	Enhancement of XRF intensity by using Au-coated glass monocapillary. Powder Diffraction, 2011, 26, 163-167.	0.2	6
33	Elemental Depth Analysis of Corroded Paint-Coated Steel by Confocal Micro-XRF Method. ISIJ International, 2013, 53, 1953-1957.	1.4	6
34	Development of Powdered Polyethylene Reference Materials for X-Ray Fluorescence Analysis of Hazardous Elements. Bunseki Kagaku, 2008, 57, 411-415.	0.2	5
35	Development of Soil Reference Materials Containing Hazardous Metals for X-Ray Fluorescence Analysis. Bunseki Kagaku, 2008, 57, 477-483.	0.2	5
36	Effect of soil moisture and its correction method for quantitative analysis of hazardous metals in polluted soil for the onâ€site XRF analysis. X-Ray Spectrometry, 0, , .	1.4	5

ΚΑΖUΗΙΚΟ ΝΑΚΑΝΟ

#	Article	IF	CITATIONS
37	Micro and imaging x-ray analysis by using polycapillary x-ray optics. Proceedings of SPIE, 2008, , .	0.8	4
38	Development of Polluted Soil Certified Reference Materials JSAC 0461-0466 for Determination of Hazardous Metals Contents. Bunseki Kagaku, 2008, 57, 191-198.	0.2	4
39	Observation of Cement/Sandstone Interface after Reaction with Supercritical CO _{2 } Using SEM-EDS, μ-XRD, and μ-Raman Spectroscopy. E-Journal of Surface Science and Nanotechnology, 2016, 14, 198-203.	0.4	4
40	Preparation of standard materials of aerosol particles for Xâ€ray fluorescence analysis using a small chamber sampling unit. X-Ray Spectrometry, 2018, 47, 450-458.	1.4	4
41	Long-term Monitoring of Metal Elements in Total Suspended Particle Aerosols Simultaneously Collected at Three Islands in Okinawa, Japan. Asian Journal of Atmospheric Environment, 2018, 12, 326-337.	1.1	4
42	Results of the 1st to the 4th Proficiency Testing on Determination of Hazardous Elements in Plastics. Bunseki Kagaku, 2008, 57, 901-910.	0.2	3
43	Simultaneous Determination of Cr, As, Se, and Other Trace Metal Elements in Seawater by ICP-MS with Hybrid Simultaneous Preconcentration Combining Iron Hydroxide Coprecipitation and Solid Phase Extraction Using Chelating Resin. International Journal of Analytical Chemistry, 2018, 2018, 1-8.	1.0	3
44	Micro-X-ray Fluorescence Analysis of Sr in Fish Otolith of Ayu <i>Plecoglossus altivelis</i> . Bunseki Kagaku, 2012, 61, 637-642.	0.2	2
45	Evaluation of Potential Anthropogenic Pollution of Gd Based on Determination of Rave Earth Elements in Tama-River Water by ICP-MS with Chelate Resin Solid-phase Extraction. Bunseki Kagaku, 2020, 69, 341-350.	0.2	2
46	Sample Surface and Near-surface Analysis by Confocal 3D XRF Spectrometer. Hyomen Kagaku, 2010, 31, 331-336.	0.0	1
47	Development of Confocal 3D X-ray Fluorescence Instrument and Its Applications to Micro Depth Profiling. Hyomen Kagaku, 2007, 28, 447-452.	0.0	1
48	Rapid Screening of Methamphetamine by a X-ray Foreign Body Inspection System Equipped with Dual Energy X-ray Method. Bunseki Kagaku, 2012, 61, 605-611.	0.2	0
49	3D Elemental Mapping in Laboratory by Confocal 3D X-ray Fluorescence Analytical Instrument. Materia Japan, 2007, 46, 833-833.	0.1	0