Jingyu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9609698/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydraulic and heat transfer characteristics in structured packed beds with methane steam reforming reaction for energy storage. International Communications in Heat and Mass Transfer, 2021, 121, 105109.	5.6	8
2	Transient numerical modeling and model predictive control of an industrial-scale steam methane reforming reactor. International Journal of Hydrogen Energy, 2021, 46, 15241-15256.	7.1	26
3	System behavior prediction by artificial neural network algorithm of a methanol steam reformer for polymer electrolyte fuel cell stack use. Fuel Cells, 2021, 21, 279-289.	2.4	3
4	Methane steam reforming with axial variable diameter particle structures in grille-sphere composite packed bed: A numerical study of hydrogen production performance. Energy Conversion and Management, 2021, 240, 114163.	9.2	16
5	A network model and numerical simulations of flow distributions in packed bed reactors with different packing structures. Applied Thermal Engineering, 2020, 172, 115141.	6.0	7
6	Assessment of flow pattern and temperature profiles by residence time distribution in typical structured packed beds. Numerical Heat Transfer; Part A: Applications, 2020, 77, 559-578.	2.1	6
7	Performance comparison of methane steam reforming in a randomly packed bed and a grille-sphere composite packed bed. Energy Conversion and Management, 2019, 193, 39-51.	9.2	29
8	Experimental study of forced convective heat transfer in grille-particle composite packed beds. International Journal of Heat and Mass Transfer, 2019, 129, 103-112.	4.8	17
9	Investigation of hydrodynamic and heat transfer performances in grille-sphere composite pebble beds with DEM-CFD-Taguchi method. Energy, 2018, 155, 909-920.	8.8	29
10	Experimental and numerical study on pressure drop and heat transfer performance of grille-sphere composite structured packed bed. Applied Energy, 2018, 227, 719-730.	10.1	43
11	EXPERIMENTAL INVESTIGATION OF AXIAL HEAT TRANSFER AND ENTRANCE EFFECT IN RANDOMLY PACKED BEDS BY A NAPHTHALENE SUBLIMATION TECHNIQUE. Heat Transfer Research, 2018, 49, 235-253.	1.6	4
12	Numerical simulation and circuit network modelling of flow distributions in 2-D array configurations. Thermal Science, 2018, 22, 1987-1998.	1.1	1
13	Optimization of gaseous fuel injection for saving energy consumption and improving imbalance of heat distribution in iron ore sintering. Applied Energy, 2017, 207, 230-242.	10.1	48
14	Experimental investigation of fluid flow and heat transfer in a randomly packed bed of sinter particles. International Journal of Heat and Mass Transfer, 2016, 99, 589-598.	4.8	36