
Jana Milucka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9609120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How low can they go? Aerobic respiration by microorganisms under apparent anoxia. FEMS Microbiology Reviews, 2022, 46, .	8.6	26
2	Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	36
3	Assigning Function to Phylogeny: FISH-nanoSIMS. Methods in Molecular Biology, 2021, 2246, 207-224.	0.9	4
4	Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature, 2021, 591, 445-450.	27.8	53
5	Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature, 2021, 600, 105-109.	27.8	48
6	Anaerobic metabolism of Foraminifera thriving below the seafloor. ISME Journal, 2020, 14, 2580-2594.	9.8	31
7	An intracellular silver deposition method for targeted detection and chemical analysis of uncultured microorganisms. Systematic and Applied Microbiology, 2020, 43, 126086.	2.8	2
8	Ideas and perspectives: A strategic assessment of methane and nitrous oxide measurements in the marine environment. Biogeosciences, 2020, 17, 5809-5828.	3.3	16
9	Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters. Environmental Microbiology, 2019, 21, 1611-1626.	3.8	27
10	Direct Cell Mass Measurements Expand the Role of Small Microorganisms in Nature. Applied and Environmental Microbiology, 2019, 85, .	3.1	22
11	Bloom of a denitrifying methanotroph, â€~ <i>Candidatus</i> Methylomirabilis limnetica', in a deep stratified lake. Environmental Microbiology, 2018, 20, 2598-2614.	3.8	87
12	<i>Crenothrix</i> are major methane consumers in stratified lakes. ISME Journal, 2017, 11, 2124-2140.	9.8	146
13	Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnology and Oceanography, 2016, 61, S101.	3.1	119
14	High rates of microbial dinitrogen fixation and sulfate reduction associated with the Mediterranean seagrass Posidonia oceanica. Systematic and Applied Microbiology, 2016, 39, 476-483.	2.8	56
15	Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Environmental Microbiology, 2016, 18, 5288-5302.	3.8	65
16	Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature, 2016, 534, 254-258.	27.8	68
17	Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes. PLoS ONE, 2015, 10, e0132574.	2.5	120
18	Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME Journal, 2015, 9, 1991-2002.	9.8	135

Jana Milucka

#	Article	IF	CITATIONS
19	Polysulfides as Intermediates in the Oxidation of Sulfide to Sulfate by Beggiatoa spp. Applied and Environmental Microbiology, 2014, 80, 629-636.	3.1	100
20	Immunological detection of enzymes for sulfate reduction in anaerobic methaneâ€oxidizing consortia. Environmental Microbiology, 2013, 15, 1561-1571.	3.8	21
21	Vacuolar respiration of nitrate coupled to energy conservation in filamentous <i><scp>B</scp>eggiatoaceae</i> . Environmental Microbiology, 2012, 14, 2911-2919.	3.8	18
22	Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 2012, 491, 541-546.	27.8	498
23	Look@NanoSIMS – a tool for the analysis of nanoSIMS data in environmental microbiology. Environmental Microbiology, 2012, 14, 1009-1023.	3.8	202
24	Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane. Environmental Microbiology, 2011, 13, 1370-1379.	3.8	25