Jana Milucka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9609120/publications.pdf

Version: 2024-02-01

394421 610901 1,925 24 19 24 citations g-index h-index papers 24 24 24 2549 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 2012, 491, 541-546.	27.8	498
2	Look@NanoSIMS \hat{a} = a tool for the analysis of nanoSIMS data in environmental microbiology. Environmental Microbiology, 2012, 14, 1009-1023.	3.8	202
3	<i>Crenothrix</i> are major methane consumers in stratified lakes. ISME Journal, 2017, 11, 2124-2140.	9.8	146
4	Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME Journal, 2015, 9, 1991-2002.	9.8	135
5	Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes. PLoS ONE, 2015, 10, e0132574.	2.5	120
6	Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnology and Oceanography, 2016, 61, S101.	3.1	119
7	Polysulfides as Intermediates in the Oxidation of Sulfide to Sulfate by Beggiatoa spp. Applied and Environmental Microbiology, 2014, 80, 629-636.	3.1	100
8	Bloom of a denitrifying methanotroph, â€~ <i>Candidatus</i> Methylomirabilis limnetica', in a deep stratified lake. Environmental Microbiology, 2018, 20, 2598-2614.	3.8	87
9	Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature, 2016, 534, 254-258.	27.8	68
10	Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Environmental Microbiology, 2016, 18, 5288-5302.	3.8	65
11	High rates of microbial dinitrogen fixation and sulfate reduction associated with the Mediterranean seagrass Posidonia oceanica. Systematic and Applied Microbiology, 2016, 39, 476-483.	2.8	56
12	Anaerobic endosymbiont generates energy for ciliate host by denitrification. Nature, 2021, 591, 445-450.	27.8	53
13	Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature, 2021, 600, 105-109.	27.8	48
14	Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	36
15	Anaerobic metabolism of Foraminifera thriving below the seafloor. ISME Journal, 2020, 14, 2580-2594.	9.8	31
16	Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters. Environmental Microbiology, 2019, 21, 1611-1626.	3.8	27
17	How low can they go? Aerobic respiration by microorganisms under apparent anoxia. FEMS Microbiology Reviews, 2022, 46, .	8.6	26
18	Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane. Environmental Microbiology, 2011, 13, 1370-1379.	3.8	25

#	Article	IF	CITATION
19	Direct Cell Mass Measurements Expand the Role of Small Microorganisms in Nature. Applied and Environmental Microbiology, 2019, 85, .	3.1	22
20	Immunological detection of enzymes for sulfate reduction in anaerobic methaneâ€oxidizing consortia. Environmental Microbiology, 2013, 15, 1561-1571.	3.8	21
21	Vacuolar respiration of nitrate coupled to energy conservation in filamentous <i><scp>B</scp>eggiatoaceae</i> . Environmental Microbiology, 2012, 14, 2911-2919.	3.8	18
22	Ideas and perspectives: A strategic assessment of methane and nitrous oxide measurements in the marine environment. Biogeosciences, 2020, 17, 5809-5828.	3.3	16
23	Assigning Function to Phylogeny: FISH-nanoSIMS. Methods in Molecular Biology, 2021, 2246, 207-224.	0.9	4
24	An intracellular silver deposition method for targeted detection and chemical analysis of uncultured microorganisms. Systematic and Applied Microbiology, 2020, 43, 126086.	2.8	2