
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/960846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nature Communications, 2022, 13, 1306.	12.8	28
2	Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue. Nature Communications, 2022, 13, 1329.	12.8	49
3	The warm winter paradox in the Pliocene northern high latitudes. Climate of the Past, 2022, 18, 1385-1405.	3.4	6
4	Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2. Climate of the Past, 2021, 17, 529-543.	3.4	20
5	Multi-variate factorisation of numerical simulations. Geoscientific Model Development, 2021, 14, 4307-4317.	3.6	5
6	Simulation of the mid-Pliocene Warm Period using HadGEM3: experimental design and results from model–model and model–data comparison. Climate of the Past, 2021, 17, 2139-2163.	3.4	15
7	Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble. Climate of the Past, 2021, 17, 2537-2558.	3.4	21
8	Modelling the mid-Pliocene warm period using HadGEM2. Global and Planetary Change, 2020, 186, 103110.	3.5	4
9	Lessons from a high-CO ₂ world: an ocean view from  â^1⁄4 3Âı years ago. Climate of the Past, 2020, 16, 1599-1615.	njlljon 3.4	52
10	Evaluation of Arctic warming in mid-Pliocene climate simulations. Climate of the Past, 2020, 16, 2325-2341.	3.4	21
11	What can Palaeoclimate Modelling do for you?. Earth Systems and Environment, 2019, 3, 1-18.	6.2	47
12	Orbital, tectonic and oceanographic controls on Pliocene climate and atmospheric circulation in Arctic Norway. Global and Planetary Change, 2018, 161, 183-193.	3.5	7
13	Pliocene and Eocene provide best analogs for near-future climates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13288-13293.	7.1	271
14	The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan. Geoscientific Model Development, 2018, 11, 1033-1057.	3.6	164
15	PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data, 2018, 5, 180254.	5.3	265
16	The Transient Response of Ice Volume to Orbital Forcing During the Warm Late Pliocene. Geophysical Research Letters, 2017, 44, 10,486.	4.0	14
17	Modeling the stable water isotope expression of El Niño in the Pliocene: Implications for the interpretation of proxy data. Paleoceanography, 2017, 32, 881-902.	3.0	3
18	The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geoscientific Model Development, 2017, 10, 3979-4003.	3.6	171

#	Article	IF	CITATIONS
19	The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design. Climate of the Past, 2016, 12, 663-675.	3.4	119
20	The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Climate of the Past, 2016, 12, 1519-1538.	3.4	143
21	Stratigraphic and Earth System approaches to defining the Anthropocene. Earth's Future, 2016, 4, 324-345.	6.3	162
22	Accounting for centennial-scale variability when detecting changes in ENSO: A study of the Pliocene. Paleoceanography, 2016, 31, 1330-1349.	3.0	9
23	Lessons on Climate Sensitivity From Past Climate Changes. Current Climate Change Reports, 2016, 2, 148-158.	8.6	42
24	Integrating geological archives and climate models for the mid-Pliocene warm period. Nature Communications, 2016, 7, 10646.	12.8	150
25	Modeling oxygen isotopes in the Pliocene: Large-scale features over the land and ocean. Paleoceanography, 2015, 30, 1183-1201.	3.0	18
26	Using results from the PlioMIP ensemble to investigate the Greenland Ice Sheet during the mid-Pliocene Warm Period. Climate of the Past, 2015, 11, 403-424.	3.4	35
27	Late Pliocene lakes and soils: a global data set for the analysis of climate feedbacks in a warmer world. Climate of the Past, 2014, 10, 167-180.	3.4	49
28	Evaluating the dominant components of warming in Pliocene climate simulations. Climate of the Past, 2014, 10, 79-90.	3.4	58
29	Assessing orbitally-forced interglacial climate variability during the mid-Pliocene Warm Period. Earth and Planetary Science Letters, 2014, 400, 261-271.	4.4	58
30	Challenges in quantifying Pliocene terrestrial warming revealed by data–model discord. Nature Climate Change, 2013, 3, 969-974.	18.8	132
31	Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison. Scientific Reports, 2013, 3, 2013.	3.3	124
32	On the identification of a Pliocene time slice for data–model comparison. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120515.	3.4	69
33	Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP. Climate of the Past, 2013, 9, 2085-2099.	3.4	60
34	Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Climate of the Past, 2013, 9, 191-209.	3.4	289
35	Mid-Pliocene climate modelled using the UK Hadley Centre Model: PlioMIP Experiments 1 and 2. Geoscientific Model Development, 2012, 5, 1109-1125.	3.6	62
36	Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental design. Geoscientific Model Development, 2012, 5, 963-974.	3.6	27

#	Article	IF	CITATIONS
37	On the causes of mid-Pliocene warmth and polar amplification. Earth and Planetary Science Letters, 2012, 321-322, 128-138.	4.4	97
38	Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33Ma). Earth-Science Reviews, 2012, 112, 1-22.	9.1	266
39	The Anthropocene: a new epoch of geological time?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 835-841.	3.4	395
40	Are there pre-Quaternary geological analogues for a future greenhouse warming?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 933-956.	3.4	88
41	Persistent El Niño–Southern Oscillation variation during the Pliocene Epoch. Paleoceanography, 2011, 26, .	3.0	52
42	Comparing structurally different climate models in a paleoenvironmental context. Eos, 2011, 92, 180-180.	0.1	1
43	A Tortonian (Late Miocene, 11.61–7.25Ma) global vegetation reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 300, 29-45.	2.3	149
44	Sea surface temperatures of the mid-Piacenzian Warm Period: A comparison of PRISM3 and HadCM3. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 83-91.	2.3	54
45	Sensitivity of Pliocene ice sheets to orbital forcing. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 98-110.	2.3	106
46	Quantifying Uncertainty in Model Predictions for the Pliocene (Plio-QUMP): Initial results. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 128-140.	2.3	17
47	Climate and environment of a Pliocene warm world. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 1-8.	2.3	129
48	Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2). Geoscientific Model Development, 2011, 4, 571-577.	3.6	151
49	Earth system sensitivity inferred from Pliocene modelling and data. Nature Geoscience, 2010, 3, 60-64.	12.9	230
50	Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1). Geoscientific Model Development, 2010, 3, 227-242.	3.6	168
51	CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization. Geology, 2010, 38, 875-878.	4.4	100
52	Introduction. Pliocene climate, processes and problems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 3-17.	3.4	85
53	Comparison of mid-Pliocene climate predictions produced by the HadAM3 and GCMAM3 General Circulation Models. Global and Planetary Change, 2009, 66, 208-224.	3.5	83
54	El Niño–Southern Oscillation, Pliocene climate and equifinality. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 127-156.	3.4	44

#	Article	IF	CITATIONS
55	Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature, 2008, 454, 1102-1105.	27.8	243
56	A new global biome reconstruction and dataâ€model comparison for the Middle Pliocene. Global Ecology and Biogeography, 2008, 17, 432-447.	5.8	275
57	A permanent El Niño-like state during the Pliocene?. Paleoceanography, 2007, 22, n/a-n/a.	3.0	96
58	Investigating early hominin dispersal patterns: developing a framework for climate data integration. Journal of Human Evolution, 2007, 53, 465-474.	2.6	60
59	Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. Climate Dynamics, 2007, 30, 1-18.	3.8	181
60	Vegetation cover in a warmer world simulated using a dynamic global vegetation model for the Mid-Pliocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237, 412-427.	2.3	47
61	Cretaceous (Wealden) climates: a modelling perspective. Cretaceous Research, 2004, 25, 303-311.	1.4	76
62	Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters, 2004, 218, 363-377.	4.4	254
63	Global scale palaeoclimate reconstruction of the middle Pliocene climate using the UKMO GCM: initial results. Global and Planetary Change, 2000, 25, 239-256.	3.5	148