
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/960791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of a reactive dye on chemically modified activated carbons—Influence of pH. Journal of Colloid and Interface Science, 2006, 296, 480-489.	9.4	265
2	Kinetics and thermodynamics of the Cr(III) adsorption on the activated carbon from co-mingled wastes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 242, 151-158.	4.7	201
3	Removal of an analgesic using activated carbons prepared from urban and industrial residues. Chemical Engineering Journal, 2010, 163, 249-255.	12.7	157
4	Acetylation of glycerol over heteropolyacids supported on activated carbon. Catalysis Communications, 2011, 12, 573-576.	3.3	157
5	Valorisation of glycerol by condensation with acetone over silica-included heteropolyacids. Applied Catalysis B: Environmental, 2010, 98, 94-99.	20.2	152
6	WO ₃ Nanoparticle-Based Conformable pH Sensor. ACS Applied Materials & Interfaces, 2014, 6, 12226-12234.	8.0	140
7	Activated carbons from sisal waste by chemical activation with K2CO3: Kinetics of paracetamol and ibuprofen removal from aqueous solution. Bioresource Technology, 2011, 102, 8253-8260.	9.6	132
8	Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite. Catalysis Communications, 2009, 10, 481-484.	3.3	127
9	Esterification of free fatty acids with methanol using heteropolyacids immobilized on silica. Catalysis Communications, 2008, 9, 1996-1999.	3.3	110
10	Valorization of glycerol into fuel additives over zeolites as catalysts. Chemical Engineering Journal, 2011, 178, 291-296.	12.7	99
11	Porous carbon: A versatile material for catalysis. Catalysis Today, 2017, 285, 194-203.	4.4	94
12	Photochemical behaviour of activated carbons under UV irradiation. Carbon, 2012, 50, 249-258.	10.3	91
13	Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes. Catalysis Today, 2006, 118, 166-171.	4.4	89
14	Glycerol acetylation over dodecatungstophosphoric acid immobilized into a silica matrix as catalyst. Applied Catalysis B: Environmental, 2009, 91, 416-422.	20.2	84
15	Esterification of fatty acids to biodiesel over polymers with sulfonic acid groups. Applied Catalysis A: General, 2009, 359, 41-46.	4.3	82
16	Esterification of free fatty acids to biodiesel over heteropolyacids immobilized on mesoporous silica. Applied Catalysis A: General, 2010, 390, 183-189.	4.3	81
17	Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures. Journal of Hazardous Materials, 2012, 219-220, 196-202.	12.4	78
18	Sol–gel encapsulation: An efficient and versatile immobilization technique for cutinase in non-aqueous media. Journal of Biotechnology, 2006, 121, 23-33.	3.8	76

#	Article	IF	CITATIONS
19	Amorphous Ibuprofen Confined in Nanostructured Silica Materials: A Dynamical Approach. Journal of Physical Chemistry C, 2011, 115, 4616-4623.	3.1	76
20	The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Applied Catalysis A: General, 2012, 413-414, 183-191.	4.3	74
21	Esterification of acetic acid by isoamylic alcohol over catalytic membranes of poly(vinyl alcohol) containing sulfonic acid groups. Applied Catalysis A: General, 2006, 311, 17-23.	4.3	70
22	High efficacy on diclofenac removal by activated carbon produced from potato peel waste. International Journal of Environmental Science and Technology, 2016, 13, 1989-2000.	3.5	70
23	The effect of surfactants on the porosity of carbon xerogels. Microporous and Mesoporous Materials, 2006, 92, 38-46.	4.4	56
24	Esterification of free fatty acids over chitosan with sulfonic acid groups. Chemical Engineering Journal, 2013, 230, 567-572.	12.7	56
25	Effect of solution pH and influence of water hardness on caffeine adsorption onto activated carbons. Canadian Journal of Chemical Engineering, 2015, 93, 68-77.	1.7	56
26	New and Advanced Porous Carbon Materials in Fine Chemical Synthesis. Emerging Precursors of Porous Carbons. Catalysts, 2019, 9, 133.	3.5	56
27	Limonene oxidation over V2O5/TiO2 catalysts. Catalysis Today, 2006, 118, 307-314.	4.4	55
28	The acid-catalysed reaction of α-pinene over molybdophosphoric acid immobilised in dense polymeric membranes. Catalysis Today, 2003, 82, 187-193.	4.4	54
29	Biphasic hydrogenation of α-pinene in high-pressure carbon dioxide. Green Chemistry, 2005, 7, 726.	9.0	54
30	Hydration of α-pinene over zeolites and activated carbons dispersed in polymeric membranes. Catalysis Today, 2000, 56, 167-172.	4.4	53
31	Photoinduced reactions occurring on activated carbons. A combined photooxidation and ESR study. Applied Catalysis A: General, 2013, 452, 1-8.	4.3	52
32	Microcalorimetric study of acid sites on ammonia- and acid-pretreated activated carbon. Carbon, 2000, 38, 691-700.	10.3	51
33	PVA embedded hydrotalcite membranes as basic catalysts for biodiesel synthesis by soybean oil methanolysis. Catalysis Today, 2010, 156, 191-197.	4.4	51
34	Highly active Cao catalysts from waste shells of egg, oyster and clam for biodiesel production. Applied Catalysis A: General, 2018, 567, 56-64.	4.3	50
35	Phase equilibrium-driven selective hydrogenation of limonene in high-pressure carbon dioxide. Green Chemistry, 2007, 9, 427-430.	9.0	49
36	Influence of Nanoscale Confinement on the Molecular Mobility of Ibuprofen. Journal of Physical Chemistry C, 2014, 118, 13857-13868.	3.1	49

#	Article	IF	CITATIONS
37	Barrier properties of carrageenan/pectin biodegradable composite films. Procedia Food Science, 2011, 1, 240-245.	0.6	47
38	Hydration of α-pinene over molybdophosphoric acid immobilized in hydrophobically modified PVA membranes. Catalysis Today, 2005, 104, 296-304.	4.4	46
39	Oxidation of limonene over carbon anchored transition metal Schiff base complexes: Effect of the linking agent. Catalysis Today, 2005, 102-103, 67-77.	4.4	44
40	Evaluation of the adsorption potential of biochars prepared from forest and agri-food wastes for the removal of fluoxetine. Bioresource Technology, 2019, 292, 121973.	9.6	44
41	The effect of α-terpineol on the hydration of α-pinene over zeolites dispersed in polymeric membranes. Catalysis Today, 2001, 67, 217-223.	4.4	43
42	Removal of lead (Pb2+) from aqueous medium by using chars from co-pyrolysis. Journal of Colloid and Interface Science, 2013, 409, 158-165.	9.4	42
43	Biomass derived solid acids as effective hydrolysis catalysts. Journal of Molecular Catalysis A, 2016, 422, 248-257.	4.8	42
44	Vanadium as a catalyst for NO, N2O and CO2 reaction with activated carbon. Catalysis Today, 2000, 57, 305-312.	4.4	41
45	New adsorbents from maize cob wastes and anaerobic digestate for H2S removal from biogas. Waste Management, 2019, 94, 136-145.	7.4	41
46	Properties of κ-carrageenan aerogels prepared by using different dissolution media and its application as drug delivery systems. Materials Chemistry and Physics, 2020, 253, 123290.	4.0	41
47	Photochemical insights of TiO2 decorated mesoporous SBA-15 materials and their influence on the photodegradation of organic contaminants. Microporous and Mesoporous Materials, 2017, 253, 203-214.	4.4	40
48	MCM-41 anchored manganese salen complexes as catalysts for limonene oxidation. Microporous and Mesoporous Materials, 2009, 120, 432-440.	4.4	38
49	Some important catalytic challenges in the bioethanol integrated biorefinery. Catalysis Today, 2014, 234, 13-23.	4.4	38
50	Adsorption of SO2 using vanadium and vanadium–copper supported on activated carbon. Catalysis Today, 2003, 78, 203-210.	4.4	37
51	Oxidation of pinane using transition metal acetylacetonate complexes immobilised on modified activated carbon. Applied Catalysis A: General, 2001, 207, 221-228.	4.3	36
52	Limonene hydrogenation in high-pressure CO2: Effect of hydrogen pressure. Journal of Supercritical Fluids, 2008, 45, 225-230.	3.2	35
53	Sonocatalysis and alkaline-doped carbons: An efficient method for the synthesis of chalcones in heterogeneous media. Catalysis Today, 2005, 107-108, 500-506.	4.4	32
54	Activated carbon as a catalyst for the synthesis of N-alkylimidazoles and imidazolium ionic liquids. Catalysis Today, 2012, 187, 108-114.	4.4	32

#	Article	lF	CITATIONS
55	Properties of chars from the gasification and pyrolysis of rice waste streams towards their valorisation as adsorbent materials. Waste Management, 2017, 65, 186-194.	7.4	32
56	Tungstophosphoric acid immobilised in SBA-15 as an efficient heterogeneous acid catalyst for the conversion of terpenes and free fatty acids. Microporous and Mesoporous Materials, 2017, 249, 16-24.	4.4	31
57	Molecular mobility of nematic E7 confined to molecular sieves with a low filling degree. Journal of Chemical Physics, 2010, 132, 224508.	3.0	30
58	Uncatalyzed and catalyzed NO and N2O reaction using various catalysts and binary barium mixtures supported on activated carbon. Catalysis Today, 1999, 54, 559-567.	4.4	29
59	Cr(III) removal from synthetic and industrial wastewaters by using co-gasification chars of rice waste streams. Bioresource Technology, 2018, 266, 139-150.	9.6	29
60	Mesoporous carbon as an efficient catalyst for alcoholysis and aminolysis of epoxides. Applied Catalysis A: General, 2012, 439-440, 24-30.	4.3	28
61	Detection of Two Class Transitions on Triton X-100 under Confinement. Journal of Physical Chemistry C, 2013, 117, 21516-21528.	3.1	28
62	Stabilizing Unstable Amorphous Menthol through Inclusion in Mesoporous Silica Hosts. Molecular Pharmaceutics, 2017, 14, 3164-3177.	4.6	28
63	Plasma generation of supported metal catalysts. Applied Catalysis A: General, 2002, 237, 41-51.	4.3	27
64	Anchoring manganese acetylacetonate complex on MCM-41: Catalytic testing on limonene oxidation. Catalysis Communications, 2007, 8, 1366-1372.	3.3	27
65	Biomass Valorization to Produce Porous Carbons: Applications in CO2 Capture and Biogas Upgrading to Biomethane—A Mini-Review. Frontiers in Energy Research, 2021, 9, .	2.3	27
66	Impact of Pretreatments on the Selectivity of Carbon for NOx Adsorption/Reduction. Energy & Fuels, 1999, 13, 903-906.	5.1	26
67	Oxidation of pinane over phthalocyanine complexes supported on activated carbon: Effect of the support surface treatment. Carbon, 2003, 41, 2793-2803.	10.3	25
68	Influence of activated carbons porous structure on iopamidol adsorption. Carbon, 2014, 77, 607-615.	10.3	25
69	Adding value to gasification and co-pyrolysis chars as removal agents of Cr3+. Journal of Hazardous Materials, 2017, 321, 173-182.	12.4	25
70	Uncatalysed and MoO3-catalysed carbon-oxygen reaction: A kinetic study. Journal of Catalysis, 1990, 126, 489-495.	6.2	24
71	Methoxylation of α-pinene over heteropolyacids immobilized in silica. Applied Catalysis A: General, 2010, 373, 140-146.	4.3	24
72	Acidâ€Activated Carbon Materials: Cheaper Alternative Catalysts for the Synthesis of Substituted Quinolines. ChemCatChem, 2013, 5, 3736-3742.	3.7	24

#	Article	IF	CITATIONS
73	Maize cob waste pre-treatments to enhance biogas production through co-anaerobic digestion with OFMSW. Waste Management, 2018, 72, 193-205.	7.4	24
74	Carbon-Based Materials for the Development of Highly Dispersed Metal Catalysts: Towards Highly Performant Catalysts for Fine Chemical Synthesis. Catalysts, 2020, 10, 1407.	3.5	24
75	Hydrolysis of sucrose using sulfonated poly(vinyl alcohol) as catalyst. Bioresource Technology, 2009, 100, 4546-4550.	9.6	23
76	Enhanced clofibric acid removal by activated carbons: Water hardness as a key parameter. Chemical Engineering Journal, 2016, 286, 538-548.	12.7	23
77	N2O conversion using manganese binary mixtures supported on activated carbon. Applied Catalysis B: Environmental, 2005, 59, 181-186.	20.2	22
78	Alkoxylation of camphene over silica-occluded tungstophosphoric acid. Applied Catalysis A: General, 2013, 451, 36-42.	4.3	22
79	Biomethane production through anaerobic co-digestion with Maize Cob Waste based on a biorefinery concept: A review. Journal of Environmental Management, 2019, 249, 109351.	7.8	22
80	Catalytic degradation of low and high density polyethylenes using ethylene polymerization catalysts: Kinetic studies using simultaneous TG/DSC analysis. Applied Catalysis A: General, 2010, 374, 170-179.	4.3	21
81	Methoxylation of α-pinene over mesoporous carbons and microporous carbons: A comparative study. Microporous and Mesoporous Materials, 2014, 199, 66-73.	4.4	21
82	Activation of co-pyrolysis chars from rice wastes to improve the removal of Cr3+ from simulated and real industrial wastewaters. Journal of Cleaner Production, 2020, 267, 121993.	9.3	20
83	Porous carbons derived from hydrothermally treated biogas digestate. Waste Management, 2020, 105, 170-179.	7.4	20
84	Nanoporous carbons prepared from argan nutshells as potential removal agents of diclofenac and paroxetine. Journal of Molecular Liquids, 2021, 326, 115368.	4.9	20
85	Uncatalysed and catalysed CO2 reaction using metal catalysts and binary vanadium mixtures supported on activated carbon. Carbon, 2001, 39, 451-463.	10.3	19
86	NO conversion using binary vanadium mixtures supported on activated carbon. Applied Catalysis B: Environmental, 2003, 44, 227-235.	20.2	19
87	Biodiesel production waste as promising biomass precursor of reusable activated carbons for caffeine removal. RSC Advances, 2016, 6, 45419-45427.	3.6	19
88	Plasma torch generation of carbon supported metal catalysts. Catalysis Today, 2004, 89, 237-244.	4.4	18
89	Methoxylation of α-pinene over poly(vinyl alcohol) containing sulfonic acid groups. Chemical Engineering Journal, 2009, 147, 302-306.	12.7	18
90	SBA-15 with sulfonic acid groups as a Green Catalyst for the acetoxylation of α-pinene. Microporous and Mesoporous Materials, 2012, 163, 237-242.	4.4	17

#	Article	IF	CITATIONS
91	Study of CO2 gasification of activated carbon catalysed by molybdenum oxide and potassium carbonate. Fuel, 1986, 65, 1400-1403.	6.4	16
92	Accessing the Physical State and Molecular Mobility of Naproxen Confined to Nanoporous Silica Matrixes. Journal of Physical Chemistry C, 2016, 120, 14390-14401.	3.1	16
93	Zeolites Efficiently Promote the Cyclization of Nonactivated Unsaturated Alcohols. Chemistry - A European Journal, 2010, 16, 12079-12082.	3.3	15
94	Experimental and theoretical study of pyrazole N-alkylation catalyzed by basic modified molecular sieves. Chemical Engineering Journal, 2010, 161, 377-383.	12.7	15
95	Biocompatible locust bean gum mesoporous matrices prepared by ionic liquids and a scCO ₂ sustainable system. RSC Advances, 2015, 5, 107700-107706.	3.6	15
96	Enhanced Catalytic Properties of Carbon supported Zirconia and Sulfated Zirconia for the Green Synthesis of Benzodiazepines. ChemCatChem, 2018, 10, 5215-5223.	3.7	15
97	Ethylene polymerization over transition-metal supported catalysts. II. Cr on zeolite, silica, and charcoal: Characterization and activity studies. Journal of Polymer Science Part A, 2003, 41, 3768-3780.	2.3	14
98	Chromium adsorption in olive stone activated carbon. Adsorption, 2006, 12, 155-162.	3.0	14
99	Simultaneous removal of 3d transition metals from multi-component solutions by activated carbons from co-mingled wastes. Separation and Purification Technology, 2008, 60, 264-271.	7.9	14
100	N2O reduction by activated carbon over iron bimetallic catalysts. Catalysis Today, 2008, 133-135, 441-447.	4.4	14
101	Cattle fat valorisation through biofuel production by hydrogenation in supercritical carbon dioxide. RSC Advances, 2014, 4, 32081.	3.6	14
102	Glycerol conversion into biofuel additives by acetalization with pentanal over heteropolyacids immobilized on zeolites. Catalysis Today, 2020, 346, 76-80.	4.4	14
103	Optimization of the Conditions for the Cr (III) Adsorption on Activated Carbon. Adsorption, 2005, 11, 581-593.	3.0	13
104	A new and easy method for anchoring manganese salen on MCM-41. Catalysis Letters, 2007, 114, 192-197.	2.6	13
105	Porous carbons-derived from vegetal biomass in the synthesis of quinoxalines. Mechanistic insights. Catalysis Today, 2020, 354, 90-99.	4.4	13
106	Acidic porous carbons involved in the green and selective synthesis of benzodiazepines. Catalysis Today, 2020, 357, 64-73.	4.4	13
107	Mesoporous silica containing sulfonic acid groups as catalysts for the alpha-pinene methoxylation. Studies in Surface Science and Catalysis, 2008, 174, 1319-1322.	1.5	12
108	Hydrolysis of sucrose over composite catalysts. Chemical Engineering Journal, 2012, 184, 347-351.	12.7	12

#	Article	IF	CITATIONS
109	Study of the removal mechanism of aquatic emergent pollutants by new bio-based chars. Environmental Science and Pollution Research, 2017, 24, 22698-22708.	5.3	12
110	Intercalation as an approach to the activated carbon preparation from Ukrainian anthracites. Journal of Physics and Chemistry of Solids, 2004, 65, 127-132.	4.0	11
111	Acetoxylation of camphene catalysed by beta zeolite. Catalysis Communications, 2008, 9, 2205-2208.	3.3	11
112	Multi-component adsorption study by using bone char: modelling and removal mechanisms. Environmental Technology (United Kingdom), 2022, 43, 789-804.	2.2	11
113	Study of the Potential of Water Treatment Sludges in the Removal of Emerging Pollutants. Molecules, 2021, 26, 1010.	3.8	11
114	Aromatisation of 2-phenyl-1-pyrroline to 2-phenylpyrrole using activated carbon. Catalysis Letters, 2006, 111, 221-225.	2.6	10
115	Intramolecular Hydroalkoxylation of Nonâ€Activated CC Bonds Catalysed by Zeolites: An Experimental and Theoretical Study. ChemSusChem, 2013, 6, 1021-1030.	6.8	10
116	Effect of ionizing radiation on antioxidant compounds present in cork wastewater. Water Science and Technology, 2013, 67, 374-379.	2.5	10
117	Silica and silica organically modified nanoparticles: Water dynamics in complex systems. Microporous and Mesoporous Materials, 2015, 217, 102-108.	4.4	10
118	New method for the immobilization of nitroxyl radical on mesoporous silica. Microporous and Mesoporous Materials, 2015, 203, 63-72.	4.4	10
119	Ibuprofen incorporated into unmodified and modified mesoporous silica: From matrix synthesis to drug release. Microporous and Mesoporous Materials, 2021, 310, 110541.	4.4	10
120	Hybrid mesoporous silica grafted with photoisomerizable 2-hydroxychalcones. Microporous and Mesoporous Materials, 2013, 180, 40-47.	4.4	8
121	Polymerisation of pinenes using vanadium oxide supported on activated carbon. Catalysis Today, 2003, 78, 197-201.	4.4	7
122	Recovery of Cr(III) by using chars from the co-gasification of agriculture and forestry wastes. Environmental Science and Pollution Research, 2019, 26, 22723-22735.	5.3	7
123	Char from Spent Tire Rubber: A Potential Adsorbent of Remazol Yellow Dye. Journal of Carbon Research, 2019, 5, 76.	2.7	7
124	Highly efficient porous carbons for the removal of W(VI) oxyanion from wastewaters. Journal of Hazardous Materials, 2021, 412, 125201.	12.4	6
125	An Environmental Scanning Electron Microscopy Study of Activated Charcoal Gasification Catalyzed by MoO3 in Air and in Oxygen and by a Eutectic Alloy of MoO3 and V2O5 in Air. Energy & Fuels, 1998, 12, 554-562.	5.1	5
126	Properties of palladium catalysts on carbon supports prepared from chemically modified and activated anthracites. Reaction Kinetics and Catalysis Letters, 2004, 83, 361-367.	0.6	5

#	Article	IF	CITATIONS
127	Coprocessing of Waste Plastic and Hydrocarbons over MFI (HZSM-5). International Journal of Chemical Kinetics, 2016, 48, 329-336.	1.6	5
128	Enhancing the biodiesel manufacturing process by use of glycerin to produce hyacinth fragrance. Clean Technologies and Environmental Policy, 2016, 18, 1551-1563.	4.1	5
129	Recovery of phenolic compounds from multi-component solution by a synthesized activated carbon using resorcinol and formaldehyde. Water Science and Technology, 2018, 77, 456-466.	2.5	5
130	Development of a model for an industrial acetylene hydrogenation reactor using plant data – Part I. Chemical Engineering Journal, 2020, 379, 122390.	12.7	5
131	Catalytic supports on the base of activated anthracites and synthetic carbons. Applied Surface Science, 2006, 252, 6084-6088.	6.1	4
132	Modified anthracites as selective sorbents for platinum metals. Russian Journal of Applied Chemistry, 2006, 79, 727-732.	0.5	4
133	DSM as a probe for the characterization of modified mesoporous silicas. Microporous and Mesoporous Materials, 2012, 161, 139-147.	4.4	3
134	How Molecular Mobility, Physical State, and Drug Distribution Influence the Naproxen Release Profile from Different Mesoporous Silica Matrices. Molecular Pharmaceutics, 2021, 18, 898-914.	4.6	3
135	The Kinetic Parameters Evaluation for the Adsorption Processes at "Liquid–Solid―Interface. , 2016, , 81-109.		3
136	Preparation and Catalytic Testing of Sulfonic Acid Functionalized Activated Carbons. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1485-1486.	1.6	2
137	Assessment of potato peel and agro-forestry biochars supplementation on in vitro ruminal fermentation. PeerJ, 2020, 8, e9488.	2.0	2
138	Composition of Higher Fullerenes Obtained by Laser Ablation of Carboniferous Materials. Technical Physics, 2005, 50, 1301.	0.7	1
139	Ethylene Polymerization over Transition Metal Supported Catalysts. III. Vanadium. E-Polymers, 2006, 6, .	3.0	1
140	Using simultaneous DSC/TG to analyze the kinetics of polyethylene degradation—catalytic cracking using HY and HZSM-5 zeolites. Reaction Kinetics, Mechanisms and Catalysis, 2009, 99, 5.	1.7	1
141	Composite catalytic materials based on k-carrageenan and CaO used on the transesterification of soybean oil for the process of biodiesel obtention. Catalysis Today, 2021, 379, 96-104.	4.4	1
142	Modelling of uncatalysed and barium catalysed NO reduction by activated carbon. Studies in Surface Science and Catalysis, 2000, 130, 1421-1426.	1.5	0
143	Bifunctional catalytic PVA composites for the one pot synthesis of camphor from camphene. Studies in Surface Science and Catalysis, 2006, , 673-680.	1.5	0
144	Anaerobic digestion sludge composting—assessment of the star-up process. , 2017, , 81-86.		0

#	Article	IF	CITATIONS
145	Recovery of the polymer content of electrical cables for thermal and acoustic insulation. , 2017, , 365-370.		0