
Daniel Gonzalez-Ibeas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9607567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genome of melon (<i>Cucumis melo</i> L.). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11872-11877.	7.1	654
2	Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology, 2009, 392, 203-214.	2.4	274
3	The walnut (<i>Juglans regia</i>) genome sequence reveals diversity in genes coding for the biosynthesis of nonâ€structural polyphenols. Plant Journal, 2016, 87, 507-532.	5.7	233
4	Sequence of the Sugar Pine Megagenome. Genetics, 2016, 204, 1613-1626.	2.9	169
5	The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae. G3: Genes, Genomes, Genetics, 2017, 7, 3157-3167.	1.8	103
6	A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biology, 2009, 9, 90.	3.6	90
7	MELOGEN: an EST database for melon functional genomics. BMC Genomics, 2007, 8, 306.	2.8	87
8	Mechanism of plant elF4Eâ€mediated resistance against a Carmovirus (<i>Tombusviridae</i>): capâ€independent translation of a viral RNA controlled <i>inâ€∫cis</i> by an (a)virulence determinant. Plant Journal, 2008, 56, 716-727.	5.7	76
9	An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics, 2009, 10, 467.	2.8	61
10	Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genomics, 2011, 12, 393.	2.8	58
11	Assessing the Gene Content of the Megagenome: Sugar Pine (<i>Pinus lambertiana</i>). G3: Genes, Genomes, Genetics, 2016, 6, 3787-3802.	1.8	51
12	Comparative Transcriptomics Among Four White Pine Species. G3: Genes, Genomes, Genetics, 2018, 8, 1461-1474.	1.8	35
13	Microarray Analysis Shows That Recessive Resistance to <i>Watermelon mosaic virus</i> in Melon Is Associated with the Induction of Defense Response Genes. Molecular Plant-Microbe Interactions, 2012, 25, 107-118.	2.6	25
14	Transcriptomic profile of leaf tissue from the leguminous tree, Millettia pinnata. Tree Genetics and Genomes, 2016, 12, 1.	1.6	11
15	Differential expression of IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like genes in Nicotiana benthamiana during corolla abscission, stem growth and water stress. BMC Plant Biology, 2020, 20, 34.	3.6	10
16	Virus-Infected Melon Plants Emit Volatiles that Induce Gene Deregulation in Neighboring Healthy Plants. Phytopathology, 2021, 111, 862-869.	2.2	5
17	Shaping the biology of citrus: I. Genomic determinants of evolution. Plant Genome, 2021, 14, e20104.	2.8	4
18	Shaping the biology of citrus: II. Genomic determinants of domestication. Plant Genome, 2021, 14, e20133.	2.8	2

1

#	Article	IF	CITATIONS
19	A Cost-effective Double-Stranded cDNA Synthesis for Plant Microarrays. Plant Molecular Biology Reporter, 2012, 30, 1276-1282.	1.8	1

20 Transcriptomics of Fruit Ripening in Citrus. , 2021, , 602-613.