

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9607379/publications.pdf Version: 2024-02-01

7ні Хіт

#	Article	IF	CITATIONS
1	Perovskite Cathode Materials for Low-Temperature Solid Oxide Fuel Cells: Fundamentals to Optimization. Electrochemical Energy Reviews, 2022, 5, 263-311.	25.5	35
2	Anchoring metal organic frameworks on nanofibers via etching-assisted strategy: Toward water-in-oil emulsion separation membranes. Separation and Purification Technology, 2022, 281, 119812.	7.9	30
3	Rapid removal of PFOA and PFOS via modified industrial solid waste: Mechanisms and influences of water matrices. Chemical Engineering Journal, 2022, 433, 133271.	12.7	16
4	Two-dimensional sub-nanometer confinement channels enabled by functional carbon dots for ultra-permeable alcohol dehydration. Journal of Membrane Science, 2022, 644, 120069.	8.2	7
5	Gravity-driven electrospun membranes for effective removal of perfluoro-organics from synthetic groundwater. Journal of Membrane Science, 2022, 644, 120180.	8.2	14
6	Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nature Catalysis, 2022, 5, 99-108.	34.4	155
7	Fast proton-selective transport through covalent organic frameworks in aqueous phase. Journal of Membrane Science, 2022, 648, 120361.	8.2	6
8	<scp>MOF</scp> â€801 polycrystalline membrane with subâ€10Ânm polymeric assembly layer for ion sieving and flow battery storage. AICHE Journal, 2022, 68, .	3.6	14
9	Structural Buffer Engineering on Metal Oxide for Longâ€Term Stable Seawater Splitting. Advanced Functional Materials, 2022, 32, .	14.9	64
10	Rigidly and intrinsically microporous polymer reinforced sulfonated polyether ether ketone membrane for vanadium flow battery. Journal of Membrane Science, 2022, 653, 120517.	8.2	10
11	Regulating multiscale structures of nickel-iron-based electrocatalysts for efficient water oxidation. Cell Reports Physical Science, 2022, 3, 100870.	5.6	4
12	Fishâ€scaleâ€like nanoâ€porous membrane based on zeolite nanosheets for long stable zincâ€based flow battery. AICHE Journal, 2022, 68, .	3.6	10
13	Recent Advances on Hydrogen Evolution and Oxygen Evolution Catalysts for Direct Seawater Splitting. Coatings, 2022, 12, 659.	2.6	14
14	Optimizing pore structure of nanoporous membranes for high-performance salinity gradient power conversion. Chemical Engineering Journal, 2022, 444, 136675.	12.7	7
15	Electrostaticâ€Induced Crystalâ€Rearrangement of Porous Organic Cage Membrane for CO ₂ Capture. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
16	Microscopic transport and phase behaviors of CO2 injection in heterogeneous formations using microfluidics. Energy, 2022, 256, 124524.	8.8	19
17	High-Flux Nanofibrous Membranes with an Under-oil Superhydrophobic Surface Modulated by Zeolitic Imidazolate Framework-71 for Gravity-Driven Water-in-Oil Separation. Industrial & Engineering Chemistry Research, 2022, 61, 9037-9043.	3.7	5
18	Room-Temperature Synthesis of NiCo-Layered Double Hydroxide/MXene Composites for High-Performance Supercapacitors. Industrial & Engineering Chemistry Research, 2022, 61, 8800-8808.	3.7	7

Zнı Xu

#	Article	IF	CITATIONS
19	Electrostaticâ€Induced Crystalâ€Rearrangement of Porous Organic Cage Membrane for CO ₂ Capture. Angewandte Chemie, 2022, 134, .	2.0	6
20	Solvent-induced interfacial polymerization enables highly crystalline covalent organic framework membranes. Journal of Membrane Science, 2022, 659, 120799.	8.2	24
21	Catalytic partial oxidation of methane to syngas: review of perovskite catalysts and membrane reactors. Catalysis Reviews - Science and Engineering, 2021, 63, 1-67.	12.9	71
22	Unveiling the effects of dimensionality of tin oxide-derived catalysts on CO ₂ reduction by using gas-diffusion electrodes. Reaction Chemistry and Engineering, 2021, 6, 345-352.	3.7	20
23	Two-dimensional material separation membranes for renewable energy purification, storage, and conversion. Green Energy and Environment, 2021, 6, 193-211.	8.7	90
24	Phase and morphology engineering of porous cobalt–copper sulfide as a bifunctional oxygen electrode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 18329-18337.	10.3	14
25	Tailoring of a catalyst La0.8Ce0.1Ni0.4Ti0.6O3â^'Î^ interlayer via in situ exsolution for a catalytic membrane reactor. Reaction Chemistry and Engineering, 2021, 6, 1395-1403.	3.7	2
26	Recent progress in the design and fabrication of MXene-based membranes. Frontiers of Chemical Science and Engineering, 2021, 15, 820-836.	4.4	27
27	Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light. Frontiers of Chemical Science and Engineering, 2021, 15, 892-901.	4.4	8
28	Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery. Journal of Membrane Science, 2021, 624, 119047.	8.2	39
29	Porous Structure Engineering of Iridium Oxide Nanoclusters on Atomic Scale for Efficient pHâ€Universal Overall Water Splitting. Small, 2021, 17, e2100121.	10.0	40
30	Novel membrane separation technologies and membrane processes. Frontiers of Chemical Science and Engineering, 2021, 15, 717-719.	4.4	16
31	Computational Design and Experimental Validation of the Optimal Bimetal-Doped SrCoO _{3â~Î} Perovskite as Solid Oxide Fuel Cell Cathode. Journal of the American Chemical Society, 2021, 143, 9507-9514.	13.7	48
32	Influence of porous media heterogeneity on water-oil immiscible displacement and mechanism analysis. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2021, , .	0.5	1
33	Zrâ€MOFâ€Enabled Controllable Ion Sieving and Proton Conductivity in Flow Battery Membrane. Advanced Functional Materials, 2021, 31, 2104629.	14.9	64
34	Ultrafast Water Transport in Twoâ€Dimensional Channels Enabled by Spherical Polyelectrolyte Brushes with Controllable Flexibility. Angewandte Chemie, 2021, 133, 20086-20094.	2.0	4
35	Ultrafast Water Transport in Twoâ€Dimensional Channels Enabled by Spherical Polyelectrolyte Brushes with Controllable Flexibility. Angewandte Chemie - International Edition, 2021, 60, 19933-19941.	13.8	39
36	Li+/Mg2+ separation by membrane separation: The role of the compensatory effect. Journal of Membrane Science, 2021, 636, 119542.	8.2	47

Zнı Xu

#	Article	IF	CITATIONS
37	Self-crosslinked MXene hollow fiber membranes for H2/CO2 separation. Journal of Membrane Science, 2021, 638, 119669.	8.2	37
38	Pore-scale investigation of immiscible displacement in rough fractures. Journal of Petroleum Science and Engineering, 2021, 207, 109107.	4.2	7
39	The Simulation of Liquid Flow in the Pore Network Model of Nanoporous Media. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	2.3	7
40	Adaptation and evolution of freshwater Anammox communities treating saline/brackish wastewater. Water Research, 2021, 207, 117815.	11.3	15
41	Biomimetic Strainâ€Stiffening Selfâ€Assembled Hydrogels. Angewandte Chemie, 2020, 132, 4860-4864.	2.0	14
42	High-flux, anti-fouling dendrimer grafted PAN membrane: Fabrication, performance and mechanisms. Journal of Membrane Science, 2020, 596, 117743.	8.2	35
43	Biomimetic Strain‧tiffening Selfâ€Assembled Hydrogels. Angewandte Chemie - International Edition, 2020, 59, 4830-4834.	13.8	48
44	Microfluidicâ€Architected Nanoarrays/Porous Core–Shell Fibers toward Robust Microâ€Energyâ€Storage. Advanced Science, 2020, 7, 1901931.	11.2	47
45	Sulfurâ€Modified Oxygen Vacancies in Iron–Cobalt Oxide Nanosheets: Enabling Extremely High Activity of the Oxygen Evolution Reaction to Achieve the Industrial Water Splitting Benchmark. Angewandte Chemie, 2020, 132, 14772-14778.	2.0	89
46	Sulfurâ€Modified Oxygen Vacancies in Iron–Cobalt Oxide Nanosheets: Enabling Extremely High Activity of the Oxygen Evolution Reaction to Achieve the Industrial Water Splitting Benchmark. Angewandte Chemie - International Edition, 2020, 59, 14664-14670.	13.8	178
47	Rücktitelbild: Biomimetic Strainâ€Stiffening Selfâ€Assembled Hydrogels (Angew. Chem. 12/2020). Angewandte Chemie, 2020, 132, 5001-5001.	2.0	0
48	A Surfactantâ€Free and Scalable General Strategy for Synthesizing Ultrathin Twoâ€Dimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angewandte Chemie, 2019, 131, 13699-13706.	2.0	64
49	A Surfactantâ€Free and Scalable General Strategy for Synthesizing Ultrathin Twoâ€Dimensional Metal–Organic Framework Nanosheets for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 13565-13572.	13.8	205
50	Mineralized Supramolecular Hydrogels Bearing Tunable Thermoâ€Responsiveness. Macromolecular Rapid Communications, 2019, 40, 1900516.	3.9	2
51	Investigations on a Mesoporous Glass Membrane as Ion Separator for a Redox Flow Battery. Batteries, 2019, 5, 6.	4.5	9
52	Ag NPs coated PVDF@TiO2 nanofiber membrane prepared by epitaxial growth on TiO2 inter-layer for 4-NP reduction application. Separation and Purification Technology, 2019, 227, 115700.	7.9	33
53	Assembly of 2D MXene nanosheets and TiO2 nanoparticles for fabricating mesoporous TiO2-MXene membranes. Journal of Membrane Science, 2018, 564, 35-43.	8.2	57
54	Selective Swelling of Electrospun Block Copolymers: From Perforated Nanofibers to High Flux and Responsive Ultrafiltration Membranes. Macromolecules, 2018, 51, 2283-2292.	4.8	36

Zнı Xu

#	Article	IF	CITATIONS
55	Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines. Science Advances, 2018, 4, eaau8634.	10.3	88
56	Microfluidic-Directed Hydrogel Fabrics Based on Interfibrillar Self-Healing Effects. Chemistry of Materials, 2018, 30, 8822-8828.	6.7	42
57	A Fiber Optic Interferometric Sensor Platform for Determining Gas Diffusivity in Zeolite Films. Sensors, 2018, 18, 1090.	3.8	7
58	Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. Journal of Membrane Science, 2018, 563, 625-632.	8.2	135
59	Fabrication of microporous GO-TiO 2 membrane via an improved weak alkaline sol–gel method. Journal of Membrane Science, 2018, 561, 10-18.	8.2	26
60	Tunable dextran retention of MXene-TiO ₂ mesoporous membranes by adjusting the 2D MXene content. 2D Materials, 2018, 5, 045003.	4.4	42
61	Co-immobilization of cellulase and lysozyme on amino-functionalized magnetic nanoparticles: An activity-tunable biocatalyst for extraction of lipids from microalgae. Bioresource Technology, 2018, 263, 317-324.	9.6	60
62	Insight into effective denitrification and desulfurization of liquid fuel with deep eutectic solvents: an innovative evaluation criterion to filtrate extractants using the compatibility index. Green Chemistry, 2018, 20, 3112-3120.	9.0	46
63	Sulfonic acid-grafted polyvinylidene fluoride electrospun mats as electro-Fenton reactor membrane components. RSC Advances, 2017, 7, 29193-29199.	3.6	2
64	Balancing Osmotic Pressure of Electrolytes for Nanoporous Membrane Vanadium Redox Flow Battery with a Draw Solute. ACS Applied Materials & Interfaces, 2016, 8, 35289-35297.	8.0	42
65	Proton-Selective Ion Transport in ZSM-5 Zeolite Membrane. Journal of Physical Chemistry C, 2016, 120, 26386-26392.	3.1	31
66	DDR-type zeolite membrane synthesis, modification and gas permeation studies. Journal of Membrane Science, 2016, 505, 194-204.	8.2	77
67	Zeolite membranes for ion separations from aqueous solutions. Current Opinion in Chemical Engineering, 2015, 8, 15-20.	7.8	28
68	Colloidal silicalite-nafion composite ion exchange membrane for vanadium redox-flow battery. Journal of Membrane Science, 2015, 484, 1-9.	8.2	51
69	A zeolite ion exchange membrane for redox flow batteries. Chemical Communications, 2014, 50, 2416.	4.1	35
70	Proton-Conducting Nanocrystalline Ceramics for High-Temperature Hydrogen Sensing. Metallurgical and Materials Transactions E, 2014, 1, 48-57.	0.5	0
71	Nonionic zeolite membrane as potential ion separator in redox-flow battery. Journal of Membrane Science, 2014, 450, 12-17.	8.2	55
72	Effect of Pressure on High-Temperature Water Gas Shift Reaction in Microporous Zeolite Membrane Reactor. Industrial & Engineering Chemistry Research, 2012, 51, 1364-1375.	3.7	60

Zні Xu

#	Article	IF	CITATIONS
			enviriente
73	Acidic ZSM-5 zeolite-coated long period fiber grating for optical sensing of ammonia. Journal of Materials Chemistry, 2011, 21, 181-186.	6.7	34
74	Preparation and characterization of mixed-conducting thin tubular membrane. Journal of Membrane Science, 2007, 299, 261-267.	8.2	22
75	Chemical Expansion, Crystal Structural Stability, and Oxygen Permeability of SrCo _{0.4} Fe _{0.6â^'<i>x</i>} Al _{<i>x</i>} O _{3â^'δ} Oxides. Journal of the American Ceramic Society, 2007, 90, 3923-3929.	3.8	10
76	Mechanochemically Synthesised Flexible Electrodes based on Bimetallic Metalâ€organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie, 0, , .	2.0	7