Belén Calvo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9607282/publications.pdf Version: 2024-02-01

687363 713466 35 461 13 21 citations h-index g-index papers 35 35 35 442 docs citations times ranked citing authors all docs

RELÃON CALVO

#	Article	IF	CITATIONS
1	A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications. Sensors, 2017, 17, 365.	3.8	68
2	Low-Voltage Linearly Tunable CMOS Transconductor With Common-Mode Feedforward. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55, 715-721.	5.4	36
3	Square-Signal-Based Algorithm for Analog Lock-In Amplifiers. IEEE Transactions on Industrial Electronics, 2014, 61, 5590-5598.	7.9	31
4	CMOS Low-Power Lock-In Amplifiers With Signal Rectification in Current Domain. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 1858-1867.	4.7	30
5	Low-Voltage Low-Power CMOS Rail-to-Rail Voltage-to-Current Converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 2333-2342.	5.4	26
6	Ratiometric Voltage-to-Frequency Converter for Long-Life Autonomous Portable Equipment. IEEE Sensors Journal, 2013, 13, 2382-2390.	4.7	24
7	An Integrated Low-Power Lock-In Amplifier and Its Application to Gas Detection. Sensors, 2014, 14, 15880-15899.	3.8	20
8	Low-Power Wide-Range Frequency-Output Temperature Sensor. IEEE Sensors Journal, 2014, 14, 1339-1340.	4.7	20
9	A High Performance LIA-Based Interface for Battery Powered Sensing Devices. Sensors, 2015, 15, 25260-25276.	3.8	20
10	Design of a Novel Envelope Detector for Fast-Settling Circuits. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 4-9.	4.7	18
11	A CMOS Low Pass Filter for SoC Lock-in-Based Measurement Devices. Sensors, 2019, 19, 5173.	3.8	16
12	Low Cost Autonomous Lock-In Amplifier for Resistance/Capacitance Sensor Measurements. Electronics (Switzerland), 2019, 8, 1413.	3.1	15
13	Gigabit Receiver Over 1 mm SI-POF For Home Area Networks. Journal of Lightwave Technology, 2012, 30, 2668-2674.	4.6	14
14	1.2 V–0.18-\$mu ext{m}\$ CMOS Temperature Sensors With Quasi-Digital Output for Portable Systems. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 2565-2573.	4.7	13
15	Reliable Lifespan Evaluation of a Remote Environment Monitoring System Based on Wireless Sensor Networks and Global System for Mobile Communications. Journal of Sensors, 2016, 2016, 1-12.	1.1	10
16	Ultralow-Power Synchronous Demodulation for Low-Level Sensor Signal Detection. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 3514-3523.	4.7	10
17	A Fully-Integrated 180 nm CMOS 1.2 V Low-Dropout Regulator for Low-Power Portable Applications. Electronics (Switzerland), 2021, 10, 2108.	3.1	9
18	An FPGA-Based Machine Learning Tool for In-Situ Food Quality Tracking Using Sensor Fusion. Biosensors, 2021, 11, 366.	4.7	9

Belén Calvo

#	Article	IF	CITATIONS
19	A 0.18μm CMOS linear-in-dB AGC post-amplifier for optical communications. Microelectronics Reliability, 2011, 51, 959-964.	1.7	8
20	A CMOS Self-Contained Quadrature Signal Generator for SoC Impedance Spectroscopy. Sensors, 2018, 18, 1382.	3.8	8
21	A 0.18 μ m CMOS LDO Regulator for an On-Chip Sensor Array Impedance Measurement System. Sensors, 2018, 18, 1405.	3.8	8
22	A Multichannel FRA-Based Impedance Spectrometry Analyzer Based on a Low-Cost Multicore Microcontroller. Electronics (Switzerland), 2019, 8, 38.	3.1	8
23	A Compact Energy Harvesting System for Outdoor Wireless Sensor Nodes Based on a Low-Cost In Situ Photovoltaic Panel Characterization-Modelling Unit. Sensors, 2017, 17, 1794.	3.8	7
24	Explosives Detection by Array of Si \$mu \$ -Cantilevers Coated With Titanosilicate-Type Nanoporous Materials. IEEE Sensors Journal, 2016, 16, 3435-3443.	4.7	6
25	High-Level Modeling and Simulation Tool for Sensor Conditioning Circuit Based on Artificial Neural Networks. Sensors, 2019, 19, 1814.	3.8	5
26	1.0 V-0.18 µm CMOS Tunable Low Pass Filters with 73 dB DR for On-Chip Sensing Acquisition Systems. Electronics (Switzerland), 2021, 10, 563.	3.1	5
27	A Programmable Plug. Sensors, 2011, 11, 9009-9032.	3.8	4
28	Wide-Band Compact 1.8 V-0.18 μm CMOS Analog Front-End for Impedance Spectroscopy. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 764-768.	3.0	4
29	High-Linearity Self-Biased CMOS Current Buffer. Electronics (Switzerland), 2018, 7, 423.	3.1	2
30	A CMOS Lock-In-based Read-out for Interdigitated Electrodes. , 2020, , .		2
31	Microelectronic CMOS Implementation of a Machine Learning Technique for Sensor Calibration. IEEE Access, 2020, 8, 207367-207376.	4.2	2
32	A Dual Synchronous Demodulator for Phase Sensitive Detection Applications. , 2020, , .		2
33	A rail-to-rail differential quasi-digital converter for low-power applications. Analog Integrated Circuits and Signal Processing, 2013, 76, 287-295.	1.4	1
34	Design and Application of Biomedical Circuits and Systems. Electronics (Switzerland), 2020, 9, 1920.	3.1	0
35	A Fully Integrated PSD-LPF for Bioimpedance Spectroscopy Applications. , 2020, , .		Ο