Ying Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9607146/publications.pdf

Version: 2024-02-01

840776 11257-		1125743
318	11	13
citations	h-index	g-index
13	13	223
docs citations	times ranked	citing authors
	citations 13	318 11 h-index 13 13

#	Article	IF	CITATIONS
1	Catalytic mechanism of in-situ Ni/C co-incorporation for hydrogen absorption of Mg. Journal of Magnesium and Alloys, 2023, 11, 1815-1824.	11.9	4
2	Effects of the different element substitution on hydrogen storage properties of Ti0.8Zr0.2Mn0.9Cr0.6V0.3M0.2 (MÂ=ÂFe, Ni, Co). Journal of Alloys and Compounds, 2022, 908, 164605.	5.5	14
3	Ni-Doped Carbon Nanotube-Mg(BH ₄) ₂ Composites for Hydrogen Storage. ACS Applied Nano Materials, 2021, 4, 1604-1612.	5.0	29
4	Improvement of hydrogen dehydrogenation performance of lithium amide pyrolysis by ball milling with magnesium. International Journal of Hydrogen Energy, 2021, 46, 18423-18432.	7.1	9
5	Novel core–shell structured MgH ₂ /AlH ₃ @CNT nanocomposites with extremely high dehydriding–rehydriding properties derived from nanoconfinement. Journal of Materials Chemistry A, 2021, 9, 10921-10932.	10.3	24
6	Current Research Progress in Magnesium Borohydride for Hydrogen Storage (A review). Progress in Natural Science: Materials International, 2021, 31, 809-820.	4.4	32
7	Improvement of desorption performance of Mg(BH4)2 by two-dimensional Ti3C2 MXene addition. International Journal of Hydrogen Energy, 2020, 45, 16654-16662.	7.1	25
8	Theoretical prediction and experimental study on catalytic mechanism of incorporated Ni for hydrogen absorption of Mg. International Journal of Hydrogen Energy, 2019, 44, 27885-27895.	7.1	23
9	Catalytic effects of Mg(BH4)2 on the desorption properties of 2LiNH2-MgH2 mixture. International Journal of Hydrogen Energy, 2019, 44, 19294-19301.	7.1	16
10	Effect of carbon nanotubes on the microstructural evolution and hydrogen storage properties of Mg(BH4)2. Journal of Alloys and Compounds, 2018, 743, 11-16.	5.5	38
11	Recent advances in improving performances of the lightweight complex hydrides Li-Mg-N-H system. Progress in Natural Science: Materials International, 2017, 27, 21-33.	4.4	73
12	Microstructural evolution and improved hydrogen storage properties for the Li 3 N–MgH 2 system by addition of LiNH 2 during the hydrogenation/dehydrogenation. International Journal of Hydrogen Energy, 2015, 40, 9298-9305.	7.1	15
13	Effects of additives on the microstructure and hydrogen storage properties of the Li3N–MgH2 mixture. Journal of Alloys and Compounds, 2014, 613, 199-203.	5.5	16