
Mohd Nor Faiz Norrrahim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9607012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers, 2021, 13, 646.	2.0	213
2	Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers, 2021, 13, 1326.	2.0	208
3	Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scale. Journal of Materials Research and Technology, 2019, 8, 2753-2766.	2.6	195
4	Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers, 2021, 13, 1047.	2.0	195
5	A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers, 2021, 13, 2170.	2.0	143
6	Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers, 2021, 13, 2710.	2.0	143
7	Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (<i>Arenga pinnata (Wurmb.) Merr</i>). Textile Reseach Journal, 2021, 91, 152-167.	1.1	127
8	Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers, 2022, 14, 182.	2.0	121
9	Polymer Composites Filled with Metal Derivatives: A Review of Flame Retardants. Polymers, 2021, 13, 1701.	2.0	101
10	Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review. Nanomaterials, 2021, 11, 2186.	1.9	101
11	Mechanical properties of oil palm fibre-reinforced polymer composites: a review. Journal of Materials Research and Technology, 2022, 17, 33-65.	2.6	92
12	Hydrothermal and wet disk milling pretreatment for high conversion of biosugars from oil palm mesocarp fiber. Bioresource Technology, 2015, 181, 263-269.	4.8	74
13	Emerging development of nanocellulose as an antimicrobial material: an overview. Materials Advances, 2021, 2, 3538-3551.	2.6	72
14	Nanocellulose: the next super versatile material for the military. Materials Advances, 2021, 2, 1485-1506.	2.6	68
15	Nanocellulose: a bioadsorbent for chemical contaminant remediation. RSC Advances, 2021, 11, 7347-7368.	1.7	66
16	Sustainable one-pot process for the production of cellulose nanofiber and polyethylene / cellulose nanofiber composites. Journal of Cleaner Production, 2019, 207, 590-599.	4.6	63
17	Hybridization of MMT/Lignocellulosic Fiber Reinforced Polymer Nanocomposites for Structural Applications: A Review. Coatings, 2021, 11, 1355.	1.2	60
18	Treatments of natural fiber as reinforcement in polymer composites—a short review. Functional Composites and Structures, 2021, 3, 024002.	1.6	55

#	Article	IF	CITATIONS
19	Effect of oil palm biomass cellulosic content on nanopore structure and adsorption capacity of biochar. Bioresource Technology, 2021, 332, 125070.	4.8	55
20	Recent advances of thermal properties of sugar palm lignocellulosic fibre reinforced polymer composites. International Journal of Biological Macromolecules, 2021, 193, 1587-1599.	3.6	53
21	Well-Dispersed Cellulose Nanofiber in Low Density Polyethylene Nanocomposite by Liquid-Assisted Extrusion. Polymers, 2020, 12, 927.	2.0	51
22	Performance evaluation and chemical recyclability of a polyethylene/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blend for sustainable packaging. RSC Advances, 2013, 3, 24378.	1.7	50
23	Superheated steam pretreatment of cellulose affects its electrospinnability for microfibrillated cellulose production. Cellulose, 2018, 25, 3853-3859.	2.4	40
24	Performance evaluation of cellulose nanofiber reinforced polymer composites. Functional Composites and Structures, 2021, 3, 024001.	1.6	39
25	Greener Pretreatment Approaches for the Valorisation of Natural Fibre Biomass into Bioproducts. Polymers, 2021, 13, 2971.	2.0	39
26	Performance Evaluation of Cellulose Nanofiber with Residual Hemicellulose as a Nanofiller in Polypropylene-Based Nanocomposite. Polymers, 2021, 13, 1064.	2.0	36
27	Filament-wound glass-fibre reinforced polymer composites: Potential applications for cross arm structure in transmission towers. Polymer Bulletin, 2023, 80, 1059-1084.	1.7	33
28	One-pot nanofibrillation of cellulose and nanocomposite production in a twin-screw extruder. IOP Conference Series: Materials Science and Engineering, 2018, 368, 012034.	0.3	31
29	Utilisation of superheated steam in oil palm biomass pretreatment process for reduced chemical use and enhanced cellulose nanofibre production. International Journal of Nanotechnology, 2019, 16, 668.	0.1	31
30	Advancement in fiber reinforced polymer, metal alloys and multi-layered armour systems for ballistic applications – A review. Journal of Materials Research and Technology, 2021, 15, 1300-1317.	2.6	30
31	Chemical Pretreatment of Lignocellulosic Biomass for the Production of Bioproducts: An Overview. Applied Science and Engineering Progress, 2021, , .	0.5	24
32	Emerging Developments Regarding Nanocellulose-Based Membrane Filtration Material against Microbes. Polymers, 2021, 13, 3249.	2.0	24
33	Sugar Palm Fibre-Reinforced Polymer Composites: Influence of Chemical Treatments on Its Mechanical Properties. Materials, 2022, 15, 3852.	1.3	24
34	Nanocellulose/Starch Biopolymer Nanocomposites: Processing, Manufacturing, and Applications. , 2020, , 65-88.		23
35	Potential of Flax Fiber Reinforced Biopolymer Composites for Cross-Arm Application in Transmission Tower: A Review. Fibers and Polymers, 2022, 23, 853-877.	1.1	23
36	Mechanical performance evaluation of bamboo fibre reinforced polymer composites and its applications: a review. Functional Composites and Structures, 2022, 4, 015009.	1.6	22

4

#	Article	IF	CITATIONS
37	Emerging Developments on Nanocellulose as Liquid Crystals: A Biomimetic Approach. Polymers, 2022, 14, 1546.	2.0	22
38	Recent developments on oximes to improve the blood brain barrier penetration for the treatment of organophosphorus poisoning: a review. RSC Advances, 2020, 10, 4465-4489.	1.7	21
39	Effect of silane treatments on mechanical performance of kenaf fibre reinforced polymer composites: a review. Functional Composites and Structures, 2021, 3, 045003.	1.6	20
40	Properties and Characterization of PLA, PHA, and Other Types of Biopolymer Composites. , 2020, , 111-138.		19
41	Oil Palm Biomass Cellulose-Fabricated Polylactic Acid Composites for Packaging Applications. , 2018, , 95-105.		17
42	Production, Processes and Modification of Nanocrystalline Cellulose from Agro-Waste: A Review. , 0, , .		17
43	Oxygen permeability properties of nanocellulose reinforced biopolymer nanocomposites. Materials Today: Proceedings, 2022, 52, 2414-2419.	0.9	16
44	Factors Affecting Spinnability of Oil Palm Mesocarp Fiber Cellulose Solution for the Production of Microfiber. BioResources, 2016, 12, .	0.5	12
45	Improving the decolorization of glycerol by adsorption using activated carbon derived from oil palm biomass. Environmental Science and Pollution Research, 2021, 28, 27976-27987.	2.7	12
46	Fabrication of a Nickel Ferrite/Nanocellulose-Based Nanocomposite as an Active Sensing Material for the Detection of Chlorine Gas. Polymers, 2022, 14, 1906.	2.0	11
47	Performance evaluation of cellulose nanofiber reinforced polypropylene biocomposites for automotive applications. , 2021, , 199-215.		10
48	Macro to nanoscale natural fiber composites for automotive components: Research, development, and application. , 2021, , 51-105.		10
49	Cationic Nanocellulose as Promising Candidate for Filtration Material of COVID-19: A Perspective. Applied Science and Engineering Progress, 2021, , .	0.5	10
50	Emerging technologies for value-added use of oil palm biomass. Environmental Science Advances, 2022, 1, 259-275.	1.0	10
51	Cellulose Nanofiber as Potential Absorbent Material for Chloride Ion. Solid State Phenomena, 0, 317, 263-269.	0.3	9
52	Nanocellulose nanocomposites in textiles. , 2022, , 397-408.		5
53	Nanocellulose-Based Filters as Novel Barrier Systems for Chemical Warfare Agents. Solid State Phenomena, 0, 317, 180-186.	0.3	4

Nanocellulose composites in the automotive industry. , 2022, , 439-467.

#	Article	IF	CITATIONS
55	Nanocellulose in sensors. , 2022, , 213-243.		4
56	Evaluation and Optimization of a New Approach on Phenol Extraction from Real Water. Sains Malaysiana, 2020, 49, 2477-2486.	0.3	2
57	Introduction to nanocellulose production from biological waste. , 2022, , 1-37.		2
58	Nanocellulose as an adsorbent for heavy metals. , 2022, , 197-211.		2
59	Economic insights into the production of cellulose nanofibrils from oil palm biomass. , 2022, , 39-48.		1
60	Policy and environmental aspects of oil palm biomass. , 2022, , 339-351.		1
61	An Overview on Chemical Contaminants of Wastewater and Their Current Removal Techniques. Asian Journal of Water, Environment and Pollution, 2022, 19, 15-22.	0.4	1
62	Introduction to oil palm biomass. , 2022, , 3-38.		0