Can Xiang

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/9606826/publications.pdf
Version: 2024-02-01

1 | Complete Characterization of Generalized Bent and $2<$ sup $\rangle k</$ sup \rangle-Bent Boolean Functions. IEEE |
| :--- |
| Transactions on Information Theory, 2017, $63,4668-4674$. | Transactions on Information Theory, 2017, 63, 4668-4674.

Linear codes with few weights from inhomogeneous quadratic functions. Designs, Codes, and Cryptography, 2017, 83, 691-714.

Combinatorial t-designs from quadratic functions. Designs, Codes, and Cryptography, 2020, 88, 553-565.
1.6
1.4

A class of linear codes with a few weights. Cryptography and Communications, 2017, 9, 93-116.

Secret sharing schemes for compartmented access structures. Cryptography and Communications, 2017, 9, 625-635.

Shortened Linear Codes From APN and PN Functions. IEEE Transactions on Information Theory, 2022, 68, 3780-3795.

An infinite family of antiprimitive cyclic codes supporting Steiner systems $\$ \$ \mathrm{~S}\left(3,8,7^{\wedge} \mathrm{m}+1\right) \$ \$$. Designs,
Codes, and Cryptography, 2022, 90, 1319-1333.

A Construction of Linear Codes Over \$ $\{\text { mathbb }\{F\}\}_{_}\left\{2^{\wedge} t\right\}$ \$ From Boolean Functions. IEEE
Transactions on Information Theory, 2017, 63, 169-176.

Two families of subfield codes with a few weights. Cryptography and Communications, 2021, 13, 117-127.
1.4
1.4

Some t-designs from BCH codes. Cryptography and Communications, 2022, 14, 641-652.

Two classes of linear codes and their weight distributions. Applicable Algebra in Engineering,
Communications and Computing, 2018, 29, 209-225.

A further construction of asymptotically optimal codebooks with multiplicative characters.
Applicable Algebra in Engineering, Communications and Computing, 2019, 30, 453-469.

New Constructions of Near-Complete External Difference Families Over Galois Rings. IEEE
Communications Letters, 2020, 24, 995-999.

Infinite families of t-designs from the binomial $\$ \$ x^{\wedge}\{4\}+x^{\wedge}\{3\} \$ \$$ over $\$ \$$ mathrm $\{G F\}\left(2^{\wedge} n\right) \$ \$$. Applicable Algebra in Engineering, Communications and Computing, 0, , 1.

