
Jan S Tchorz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9606599/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The RSPO–LGR4/5–ZNRF3/RNF43 module controls liver zonation and size. Nature Cell Biology, 2016, 18, 467-479.	10.3	253
2	YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors. Hepatology, 2015, 62, 1497-1510.	7.3	187
3	R-Spondin Potentiates Wnt/β-Catenin Signaling through Orphan Receptors LGR4 and LGR5. PLoS ONE, 2012, 7, e40976.	2.5	153
4	YAP, but Not RSPO-LGR4/5, Signaling in Biliary Epithelial Cells Promotes a Ductular Reaction in Response to Liver Injury. Cell Stem Cell, 2019, 25, 39-53.e10.	11.1	150
5	Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science, 2021, 371, .	12.6	128
6	AXIN2+ Pericentral Hepatocytes Have Limited Contributions to Liver Homeostasis and Regeneration. Cell Stem Cell, 2020, 26, 97-107.e6.	11.1	119
7	Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology, 2009, 50, 871-879.	7.3	112
8	Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology, 2013, 57, 1607-1619.	7.3	102
9	Homeostatic neurogenesis in the adult hippocampus does not involve amplification of Ascl1high intermediate progenitors. Nature Communications, 2012, 3, 670.	12.8	88
10	Functional roles of Lgr4 and Lgr5 in embryonic gut, kidney and skin development in mice. Developmental Biology, 2014, 390, 181-190.	2.0	87
11	A Modified RMCE-Compatible Rosa26 Locus for the Expression of Transgenes from Exogenous Promoters. PLoS ONE, 2012, 7, e30011.	2.5	61
12	ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation. Cell Stem Cell, 2021, 28, 1822-1837.e10.	11.1	42
13	The RSPOâ€LGR4/5â€ZNRF3/RNF43 module in liver homeostasis, regeneration, and disease. Hepatology, 2022, 76, 888-899.	7.3	18
14	Cell adhesion molecule KIRREL1 is a feedback regulator of Hippo signaling recruiting SAV1 to cell-cell contact sites. Nature Communications, 2022, 13, 930.	12.8	12
15	Clinical translation of liver regeneration therapies: A conceptual road map. Biochemical Pharmacology, 2020, 175, 113847.	4.4	11
16	Hepatic ductular reaction: a double-edged sword. Aging, 2019, 11, 9223-9224.	3.1	5
17	Liver zonation—a journey through space and time. Nature Metabolism, 2021, 3, 7-8.	11.9	4
18	Prometheus revisited: liver homeostasis and repair. Aging, 2020, 12, 4685-4687.	3.1	4

Jan S Tchorz

#	Article	IF	CITATIONS
19	MRI as Primary End Point for Pharmacologic Experiments of Liver Regeneration in a Murine Model of Partial Hepatectomy. Academic Radiology, 2016, 23, 1446-1453.	2.5	3
20	The Conundrum of the Pericentral Hepatic Niche: WNT/-Catenin Signaling, Metabolic Zonation, and Many Open Questions. Gene Expression, 2020, 20, 119-124.	1.2	3
21	Multicellular dynamics of zonal liver regeneration mapped in space and time. Cell Stem Cell, 2022, 29, 871-872.	11.1	2
22	Retuning hepatocytes improves their functional engraftment. Hepatology, 2022, 76, 1557-1559.	7.3	0