
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9606077/publications.pdf Version: 2024-02-01

Ημλικο

#	Article	IF	CITATIONS
1	Largeâ€Diameter Carbon Nanotube Transparent Conductor Overcoming Performance–Yield Tradeoff. Advanced Functional Materials, 2022, 32, 2103397.	7.8	24
2	InSb Nanowire Direct Growth on Plastic for Monolithic Flexible Device Fabrication. ACS Applied Electronic Materials, 2022, 4, 539-545.	2.0	1
3	Molybdenum Disulfide/Doubleâ€Wall Carbon Nanotube Mixedâ€Dimensional Heterostructures. Advanced Materials Interfaces, 2022, 9, .	1.9	6
4	Direct GaAs Nanowire Growth and Monolithic Lightâ€Emitting Diode Fabrication on Flexible Plastic Substrates. Advanced Photonics Research, 2022, 3, .	1.7	4
5	High-resolution crystal structure of a 20 kDa superfluorinated gold nanocluster. Nature Communications, 2022, 13, 2607.	5.8	10
6	Colors of Singleâ€Wall Carbon Nanotubes. Advanced Materials, 2021, 33, e2006395.	11.1	18
7	Carbon Nanotubes: Colors of Singleâ€Wall Carbon Nanotubes (Adv. Mater. 8/2021). Advanced Materials, 2021, 33, 2170060.	11.1	1
8	A semi-grand canonical kinetic Monte Carlo study of single-walled carbon nanotube growth. AIP Advances, 2021, 11, .	0.6	6
9	Reuse of LiCoO ₂ Electrodes Collected from Spent Liâ€Ion Batteries after Electrochemical Reâ€Lithiation of the Electrode. ChemSusChem, 2021, 14, 2434-2444.	3.6	21
10	Understanding the Stabilizing Effects of Nanoscale Metal Oxide and Li–Metal Oxide Coatings on Lithium-Ion Battery Positive Electrode Materials. ACS Applied Materials & Interfaces, 2021, 13, 42773-42790.	4.0	18
11	High-performance transparent conducting films of long single-walled carbon nanotubes synthesized from toluene alone. Nano Research, 2020, 13, 112-120.	5.8	29
12	Hybrid Lowâ€Ðimensional Carbon Allotropes Formed in Gas Phase. Advanced Functional Materials, 2020, 30, 2005016.	7.8	11
13	A structure and activity relationship for single-walled carbon nanotube growth confirmed by <i>in situ</i> observations and modeling. Nanoscale, 2020, 12, 21923-21931.	2.8	9
14	Effect of Electrochemical Oxidation on Physicochemical Properties of Fe ontaining Singleâ€Walled Carbon Nanotubes. ChemElectroChem, 2020, 7, 4136-4143.	1.7	4
15	Electrochemical Detection of Oxycodone and Its Main Metabolites with Nafion-Coated Single-Walled Carbon Nanotube Electrodes. Analytical Chemistry, 2020, 92, 8218-8227.	3.2	31
16	Hydrodeoxygenation of Levulinic Acid Dimers on a Zirconia-Supported Ruthenium Catalyst. Catalysts, 2020, 10, 200.	1.6	12
17	Single-Walled Carbon Nanotube Network Electrodes for the Detection of Fentanyl Citrate. ACS Applied Nano Materials, 2020, 3, 1203-1212.	2.4	28
18	Highly Luminescent Gold Nanocluster Frameworks. Advanced Optical Materials, 2019, 7, 1900620.	3.6	42

#	Article	IF	CITATIONS
19	In-Situ Measurements of Single Walled Carbon Nanotube Growth Reveal the Structures of Active and Inactive Catalyst Nanoparticles. Microscopy and Microanalysis, 2019, 25, 1452-1453.	0.2	0
20	Growth kinetics of single-walled carbon nanotubes with a (2 <i>n</i> , <i>n</i>) chirality selection. Science Advances, 2019, 5, eaav9668.	4.7	42
21	Can Single-Walled Carbon Nanotube Diameter Be Defined by Catalyst Particle Diameter?. Journal of Physical Chemistry C, 2019, 123, 30305-30317.	1.5	17
22	Thermal conductivity suppression in GaAs–AlAs core–shell nanowire arrays. Nanoscale, 2019, 11, 20507-20513.	2.8	9
23	Can single-walled carbon nanotube diameter be defined by catalyst particle diameter?. Journal of Physical Chemistry C, 2019, 123, .	1.5	1
24	Ill–V nanowires on black silicon and low-temperature growth of self-catalyzed rectangular InAs NWs. Scientific Reports, 2018, 8, 6410.	1.6	11
25	Validity of Measuring Metallic and Semiconducting Single-Walled Carbon Nanotube Fractions by Quantitative Raman Spectroscopy. Analytical Chemistry, 2018, 90, 2517-2525.	3.2	34
26	Growth modes and chiral selectivity of single-walled carbon nanotubes. Nanoscale, 2018, 10, 6744-6750.	2.8	67
27	Gas phase synthesis of metallic and bimetallic catalyst nanoparticles by rod-to-tube type spark discharge generator. Journal of Aerosol Science, 2018, 123, 208-218.	1.8	23
28	Nanowire network–based multifunctional all-optical logic gates. Science Advances, 2018, 4, eaar7954.	4.7	51
29	Direct Synthesis of Colorful Single-Walled Carbon Nanotube Thin Films. Journal of the American Chemical Society, 2018, 140, 9797-9800.	6.6	59
30	Atomic-Scale Deformations at the Interface of a Mixed-Dimensional van der Waals Heterostructure. ACS Nano, 2018, 12, 8512-8519.	7.3	19
31	Catalyst Support Effect on the Activity and Durability of Magnetic Nanoparticles: toward Design of Advanced Electrocatalyst for Full Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 31300-31311.	4.0	64
32	Application-Specific Catalyst Layers: Pt-Containing Carbon Nanofibers for Hydrogen Peroxide Detection. ACS Omega, 2017, 2, 496-507.	1.6	21
33	Growth Termination and Multiple Nucleation of Single-Wall Carbon Nanotubes Evidenced by <i>in Situ</i> Transmission Electron Microscopy. ACS Nano, 2017, 11, 4483-4493.	7.3	60
34	Tailorable secondâ€harmonic generation from an individual nanowire using spatially phaseâ€shaped beams. Laser and Photonics Reviews, 2017, 11, 1600175.	4.4	23
35	Electrochemical Activation of Single-Walled Carbon Nanotubes with Pseudo-Atomic-Scale Platinum for the Hydrogen Evolution Reaction. ACS Catalysis, 2017, 7, 3121-3130.	5.5	279
36	Direct observation of nanowire growth and decomposition. Scientific Reports, 2017, 7, 12310.	1.6	8

#	Article	IF	CITATIONS
37	Minimizing structural deformation of gold nanorods in plasmon-enhanced dye-sensitized solar cells. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	3
38	Protective capping and surface passivation of III-V nanowires by atomic layer deposition. AIP Advances, 2016, 6, .	0.6	29
39	Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution. Nature Communications, 2016, 7, 11160.	5.8	75
40	Maghemite nanoparticles decorated on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 5216-5222.	5.2	65
41	A reference material of single-walled carbon nanotubes: quantitative chirality assessment using optical absorption spectroscopy. RSC Advances, 2015, 5, 102974-102980.	1.7	15
42	A Novel Method for Continuous Synthesis of ZnO Tetrapods. Journal of Physical Chemistry C, 2015, 119, 16366-16373.	1.5	30
43	Dry Functionalization and Doping of Single-Walled Carbon Nanotubes by Ozone. Journal of Physical Chemistry C, 2015, 119, 27821-27828.	1.5	34
44	Insights into chirality distributions of single-walled carbon nanotubes grown on different Co _x Mg _{1â^'x} O solid solutions. Journal of Materials Chemistry A, 2014, 2, 5883-5889.	5.2	26
45	Investigation of plasmonic gold–silica core–shell nanoparticle stability in dye-sensitized solar cell applications. Journal of Colloid and Interface Science, 2014, 427, 54-61.	5.0	24
46	Structural Characteristics of Natural-Gas-Vehicle-Aged Oxidation Catalyst. Topics in Catalysis, 2013, 56, 576-585.	1.3	27
47	Orbital and spin magnetic moments of transforming one-dimensional iron inside metallic and semiconducting carbon nanotubes. Physical Review B, 2013, 87, .	1.1	23
48	GaAs nanowires grown on Al-doped ZnO buffer layer. Journal of Applied Physics, 2013, 114, .	1.1	8
49	Growth Mechanism of Single-Walled Carbon Nanotubes on Iron–Copper Catalyst and Chirality Studies by Electron Diffraction. Chemistry of Materials, 2012, 24, 1796-1801.	3.2	63
50	Influence of different synthesis approach on doping behavior of silver nanoparticles onto the iron oxide–silica coreshell surfaces. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	7
51	Preparation of amino acid nanoparticles at varying saturation conditions in an aerosol flow reactor. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	3
52	Nitrogen-Doped Single-Walled Carbon Nanotube Thin Films Exhibiting Anomalous Sheet Resistances. Chemistry of Materials, 2011, 23, 2201-2208.	3.2	43
53	Low temperature growth of SWNTs on a nickel catalyst by thermal chemical vapor deposition. Nano Research, 2011, 4, 334-342.	5.8	50
54	Tailoring the diameter of single-walled carbon nanotubes for optical applications. Nano Research, 2011, 4, 807-815.	5.8	76

#	Article	IF	CITATIONS
55	Nitrogenâ€doped SWCNT synthesis using ammonia and carbon monoxide. Physica Status Solidi (B): Basic Research, 2010, 247, 2726-2729.	0.7	19
56	Temperature Dependent Raman Spectra of Carbon Nanobuds. Journal of Physical Chemistry C, 2010, 114, 13540-13545.	1.5	22
57	Selective Covalent Functionalization of Carbon Nanobuds. Chemistry of Materials, 2010, 22, 4347-4349.	3.2	16
58	Thermoelectric Characteristics of InAs Nanowire Networks Directly Grown on Flexible Plastic Substrates. ACS Applied Energy Materials, 0, , .	2.5	3