
Xin-Zhi Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9605802/publications.pdf

Version: 2024-02-01

Χινι-Ζηι Υιι

#	Article	IF	CITATIONS
1	Building ultra-stable K–Te battery by molecular regulation. Journal of Energy Chemistry, 2022, 69, 100-107.	7.1	15
2	Layered Superconductor Cu _{0.11} TiSe ₂ as a High‣table K athode. Advanced Functional Materials, 2022, 32, 2109893.	7.8	30
3	Structureâ€Optimized Phosphorene for Superâ€Stable Potassium Storage. Advanced Functional Materials, 2022, 32, .	7.8	23
4	Free-standing N-doped hollow carbon fibers as high-performance anode for potassium ion batteries. Science China Materials, 2021, 64, 547-556.	3.5	45
5	Balsaâ€Woodâ€Derived Binder–Free Freestanding Carbon Foam as Highâ€Performance Potassium Anode. Advanced Energy and Sustainability Research, 2021, 2, 2100018.	2.8	9
6	Fe0.8CoSe2 nanosphere coated by N-doped carbon for ultra-high rate potassium selenium battery. Rare Metals, 2021, 40, 2455-2463.	3.6	26
7	Facile Synthesis of Copper Sulfide Nanosheet@Graphene Oxide for the Anode of Potassiumâ€ion Batteries. Energy Technology, 2020, 8, 1900987.	1.8	37
8	An Ultrastable Nonaqueous Potassiumâ€ion Hybrid Capacitor. Advanced Functional Materials, 2020, 30, 2004247.	7.8	100
9	Facilitating Phase Evolution for a High-Energy-Efficiency, Low-Cost O3-Type Na _{<i>x</i>} Cu _{0.18} Fe _{0.3} Mn _{0.52} O ₂ Sodium Ion Battery Cathode. Inorganic Chemistry, 2020, 59, 13792-13800.	1.9	15
10	Polyimide/metal-organic framework hybrid for high performance Al - Organic battery. Energy Storage Materials, 2020, 31, 58-63.	9.5	78
11	Carbon Dots@rGO Paper as Freestanding and Flexible Potassiumâ€lon Batteries Anode. Advanced Science, 2020, 7, 2000470.	5.6	95
12	Rapidly synthesizing interconnected carbon nanocage by microwave toward high-performance aluminum batteries. Chemical Engineering Journal, 2020, 389, 124407.	6.6	52
13	Rational Design of a Polyimide Cathode for a Stable and High-Rate Potassium-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 42078-42085.	4.0	55
14	Accessible COF-Based Functional Materials for Potassium-Ion Batteries and Aluminum Batteries. ACS Applied Materials & Interfaces, 2019, 11, 44352-44359.	4.0	62
15	Graphene Armored with a Crystal Carbon Shell for Ultrahigh-Performance Potassium Ion Batteries and Aluminum Batteries. ACS Nano, 2019, 13, 10631-10642.	7.3	98
16	Unzipped carbon nanotubes for aluminum battery. Energy Storage Materials, 2019, 23, 72-78.	9.5	64
17	<i>In Situ</i> Alloying Strategy for Exceptional Potassium Ion Batteries. ACS Nano, 2019, 13, 3703-3713.	7.3	194
18	Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chemical Communications, 2019, 55, 12511-12514.	2.2	90

Хім-Zhi Yu

#	Article	IF	CITATIONS
19	Low Cost and Superior Safety Industrial Grade Lithium Dualâ€lon Batteries with a Second Life. Energy Technology, 2018, 6, 1994-2000.	1.8	29
20	Semimetallic vanadium molybdenum sulfide for high-performance battery electrodes. Journal of Materials Chemistry A, 2018, 6, 9411-9419.	5.2	73
21	A novel aluminum dual-ion battery. Energy Storage Materials, 2018, 11, 91-99.	9.5	123
22	Ultrathin Honeycomb-like Carbon as Sulfur Host Cathode for High Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2018, 1, 7076-7084.	2.5	17
23	Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries. Energy Storage Materials, 2018, 15, 361-367.	9.5	73
24	Carbon Nanoscrolls for Aluminum Battery. ACS Nano, 2018, 12, 8456-8466.	7.3	165
25	MoSe ₂ /Nâ€Doped Carbon as Anodes for Potassiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1801477.	10.2	391
26	Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes. Journal of Materials Chemistry A, 2017, 5, 4809-4817.	5.2	61
27	Graphene Nanoribbons on Highly Porous 3D Graphene for Highâ€Capacity and Ultrastable Alâ€Ion Batteries. Advanced Materials, 2017, 29, 1604118.	11.1	293
28	An Iodine Quantum Dots Based Rechargeable Sodium–Iodine Battery. Advanced Energy Materials, 2017, 7, 1601885.	10.2	104
29	Super Longâ€Life Supercapacitors Based on the Construction of Nanohoneycombâ€Like Strongly Coupled CoMoO ₄ –3D Graphene Hybrid Electrodes. Advanced Materials, 2014, 26, 1044-1051.	11.1	630
30	Facile synthesis of well-ordered manganese oxide nanosheet arrays on carbon cloth for high-performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 8833.	5.2	76
31	NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 9024.	5.2	185
32	Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. Journal of Materials Chemistry A, 2013, 1, 7247.	5.2	246
33	A green and fast strategy for the scalable synthesis of Fe2O3/graphene with significantly enhanced Li-ion storage properties. Journal of Materials Chemistry, 2012, 22, 3868.	6.7	125
34	Graphene oxide oxidizes stannous ions to synthesize tin sulfide–graphene nanocomposites with small crystal size for high performance lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 23091.	6.7	97