
## Yan Xiaoqing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9604782/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Anthraquinone-Catalyzed TEMPO Reduction to Realize Two-Electron Energy Storage of Poly(TEMPO-methacrylate). ACS Energy Letters, 2022, 7, 1481-1489.                                                                                  | 17.4 | 8         |
| 2  | A strong Jahn–Teller distortion in Mn <sub>3</sub> O <sub>4</sub> –MnO heterointerfaces for<br>enhanced silver catalyzed formaldehyde reforming into hydrogen. Sustainable Energy and Fuels, 2022,<br>6, 3068-3077.                  | 4.9  | 7         |
| 3  | Biomimetic polydopamine catalyst with redox activity for oxygen-promoted H <sub>2</sub><br>production <i>via</i> aqueous formaldehyde reforming. Sustainable Energy and Fuels, 2021, 5,<br>4575-4579.                                | 4.9  | 2         |
| 4  | The interplay of Ag and ferromagnetic MgFe <sub>2</sub> O <sub>4</sub> for optimized<br>oxygen-promoted hydrogen evolution <i>via</i> formaldehyde reforming. Catalysis Science and<br>Technology, 2021, 11, 6462-6469.              | 4.1  | 13        |
| 5  | Rationally tuning the active sites of copper-based catalysts towards formaldehyde reforming into hydrogen. Sustainable Energy and Fuels, 2021, 5, 6470-6477.                                                                         | 4.9  | 1         |
| 6  | Oxygen-mediated water splitting on metal-free heterogeneous photocatalyst under visible light.<br>Applied Catalysis B: Environmental, 2020, 279, 119378.                                                                             | 20.2 | 14        |
| 7  | <i>In situ</i> generated electron-deficient metallic copper as the catalytically active site for<br>enhanced hydrogen production from alkaline formaldehyde solution. Catalysis Science and<br>Technology, 2019, 9, 5292-5300.       | 4.1  | 21        |
| 8  | Ultrasmall Silver Clusters Stabilized on MgO for Robust Oxygen-Promoted Hydrogen Production from Formaldehyde Reforming. ACS Applied Materials & amp; Interfaces, 2019, 11, 33946-33954.                                             | 8.0  | 26        |
| 9  | Interface engineering of palladium and zinc oxide nanorods with strong metal–support interactions<br>for enhanced hydrogen production from base-free formaldehyde solution. Journal of Materials<br>Chemistry A, 2019, 7, 8855-8864. | 10.3 | 38        |
| 10 | Directional oxygen activation by oxygen-vacancy-rich WO <sub>2</sub> nanorods for superb<br>hydrogen evolution <i>via</i> formaldehyde reforming. Journal of Materials Chemistry A, 2019, 7,<br>14592-14601.                         | 10.3 | 55        |
| 11 | Tandem catalysis induced by hollow PdO: highly efficient H <sub>2</sub> generation coupled with<br>organic dye degradation <i>via</i> sodium formate reforming. Catalysis Science and Technology, 2018,<br>8, 6217-6227.             | 4.1  | 5         |
| 12 | Oxygen-Controlled Hydrogen Evolution Reaction: Molecular Oxygen Promotes Hydrogen Production from Formaldehyde Solution Using Ag/MgO Nanocatalyst. ACS Catalysis, 2017, 7, 1478-1484.                                                | 11.2 | 74        |
| 13 | Single component gold on protonated titanate nanotubes for surface-charge-mediated, additive-free dehydrogenation of formic acid into hydrogen. RSC Advances, 2016, 6, 100103-100107.                                                | 3.6  | 12        |
| 14 | The interparticle coupling effect of gold nanoparticles in confined ordered mesopores enhances high temperature catalytic oxidation. RSC Advances, 2016, 6, 88486-88489.                                                             | 3.6  | 3         |