Farshid Amirabdollahian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/960419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Upper Limb Robot Mediated Stroke Therapy—GENTLE/s Approach. Autonomous Robots, 2003, 15, 35-51.	4.8	312
2	Would You Trust a (Faulty) Robot?. , 2015, , .		297
3	Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 111.	4.6	278
4	Using the Humanoid Robot KASPAR to Autonomously Play Triadic Games and Facilitate Collaborative Play Among Children With Autism. IEEE Transactions on Autonomous Mental Development, 2014, 6, 183-199.	1.6	156
5	A Pilot Study with a Novel Setup for Collaborative Play of the Humanoid Robot KASPAR with Children with Autism. International Journal of Social Robotics, 2014, 6, 45-65.	4.6	133
6	Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy. Journal of NeuroEngineering and Rehabilitation, 2007, 4, 4.	4.6	110
7	Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 89.	4.6	99
8	Collaborating with Kaspar: Using an autonomous humanoid robot to foster cooperative dyadic play among children with autism. , 2010, , .		62
9	A multi-perspective evaluation of a service robot for seniors: the voice of different stakeholders. Disability and Rehabilitation: Assistive Technology, 2018, 13, 592-599.	2.2	62
10	Prevalence of haptic feedback in robot-mediated surgery: a systematic review of literature. Journal of Robotic Surgery, 2018, 12, 11-25.	1.8	57
11	The experience of living with stroke and using technology: opportunities to engage and co-design with end users. Disability and Rehabilitation: Assistive Technology, 2016, 11, 653-660.	2.2	44
12	Design Parameters in Multimodal Games for Rehabilitation. Games for Health Journal, 2014, 3, 13-20.	2.0	40
13	Which activities threaten independent living of elderly when becoming problematic: inspiration for meaningful service robot functionality. Disability and Rehabilitation: Assistive Technology, 2014, 9, 445-452.	2.2	33
14	Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 102.	4.6	24
15	Assistive technology design and development for acceptable robotics companions for ageing years. Paladyn, 2013, 4, .	2.7	24
16	Investigating tactile event recognition in child-robot interaction for use in autism therapy. , 2011, 2011, 5347-51.		23
17	Accompany: Acceptable robotiCs COMPanions for AgeiNG Years — Multidimensional aspects of human-system interactions. , 2013, , .		18
18	Analysis of the Results from Use of Haptic Peg-in-Hole Task for Assessment in Neurorehabilitation. Applied Bionics and Biomechanics, 2011, 8, 1-11.	1.1	15

#	Article	IF	CITATIONS
19	Lag–lead based assessment and adaptation of exercise speed for stroke survivors. Robotics and Autonomous Systems, 2015, 73, 144-154.	5.1	11
20	Analysis of the Fugl-Meyer Outcome Measures Assessing the Effectiveness of Robot-Mediated Stroke Therapy. , 2007, , .		9
21	Grasps Recognition and Evaluation of Stroke Patients for Supporting Rehabilitation Therapy. BioMed Research International, 2014, 2014, 1-14.	1.9	8
22	Differences of Human Perceptions of a Robot Moving using Linear or Slow in, Slow out Velocity Profiles When Performing a Cleaning Task. , 2019, , .		8
23	Adaptive robot mediated upper limb training using electromyogram-based muscle fatigue indicators. PLoS ONE, 2020, 15, e0233545.	2.5	8
24	A Novel Reinforcement-Based Paradigm for Children to Teach the Humanoid Kaspar Robot. International Journal of Social Robotics, 2020, 12, 709-720.	4.6	7
25	Robot self-preservation and adaptation to user preferences in game play, a preliminary study. , 2011, , .		5
26	Adaptive Human-Robot Interaction Based on Lag-Lead Modelling for Home-Based Stroke Rehabilitation: Novel Mechanisms for Assessment and Performance Based Adaptation of Task Difficulty. , 2013, , .		5
27	Humans' Perception of a Robot Moving Using a Slow in and Slow Out Velocity Profile. , 2019, , .		5
28	Influence of muscle fatigue on electromyogram–kinematic correlation during robot-assisted upper limb training. Journal of Rehabilitation and Assistive Technologies Engineering, 2020, 7, 205566832090301.	0.9	4
29	Preliminary Findings of Feasibility and Compliance of Technology-Supported Distal Arm Training at Home after Stroke. Biosystems and Biorobotics, 2014, , 665-673.	0.3	4
30	Impact of lead-lag contributions of subject on adaptability of the GENTLE/A system: An exploratory study. , 2012, , .		2
31	EEG Spectral Feature Modulations Associated With Fatigue in Robot-Mediated Upper Limb Gross and Fine Motor Interactions. Frontiers in Neurorobotics, 2021, 15, 788494.	2.8	2
32	How a Robot's Social Credibility Affects Safety Performance. Lecture Notes in Computer Science, 2019, , 740-749.	1.3	1
33	Classification of gross upper limb movements using upper arm electromyographic features. , 2017, , .		0
34	Hand Gesture Based Gameplay with a Smoothie Maker Game Using Myo Armband. Lecture Notes in Computer Science, 2019, , 388-398.	1.3	0