List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9603650/publications.pdf

Version: 2024-02-01

WIL-MIN DENC

#	Article	IF	CITATIONS
1	Polyploidy in development and tumor models in Drosophila. Seminars in Cancer Biology, 2022, 81, 106-118.	9.6	12
2	Tumor Allotransplantation in Drosophila melanogaster with a Programmable Auto-Nanoliter Injector. Journal of Visualized Experiments, 2021, , .	0.3	3
3	Tumor models in various <i>Drosophila</i> tissues. WIREs Mechanisms of Disease, 2021, 13, e1525.	3.3	13
4	A comprehensive in vivo screen for anti-apoptotic miRNAs indicates broad capacities for oncogenic synergy. Developmental Biology, 2021, 475, 10-20.	2.0	9
5	Polyploid mitosis and depolyploidization promote chromosomal instability and tumor progression in a Notch-induced tumor model. Developmental Cell, 2021, 56, 1976-1988.e4.	7.0	17
6	Modeling Notch-Induced Tumor Cell Survival in the Drosophila Ovary Identifies Cellular and Transcriptional Response to Nuclear NICD Accumulation. Cells, 2021, 10, 2222.	4.1	9
7	A single-cell atlas of adult Drosophila ovary identifies transcriptional programs and somatic cell lineage regulating oogenesis. PLoS Biology, 2020, 18, e3000538.	5.6	85
8	Deconstructing tumor heterogeneity: the stromal perspective. Oncotarget, 2020, 11, 3621-3632.	1.8	29
9	CRL4Mahj E3 ubiquitin ligase promotes neural stem cell reactivation. PLoS Biology, 2019, 17, e3000276.	5.6	19
10	Oncogenic Notch Triggers Neoplastic Tumorigenesis in a Transition-Zone-like Tissue Microenvironment. Developmental Cell, 2019, 49, 461-472.e5.	7.0	27
11	Drosophila chromatin assembly factor 1 p105 and p180 subunits are required for follicle cell proliferation via inhibiting Notch signaling. Journal of Cell Science, 2019, 132, .	2.0	3
12	Drosophila Model in Cancer: An Introduction. Advances in Experimental Medicine and Biology, 2019, 1167, 1-14.	1.6	21
13	Endoreplication: The Good, the Bad, and the Ugly. Trends in Cell Biology, 2018, 28, 465-474.	7.9	98
14	Germline silencing of UASt depends on the piRNA pathway. Journal of Genetics and Genomics, 2018, 45, 273-276.	3.9	4
15	Serrate/Notch Signaling Regulates the Size of the Progenitor Cell Pool in <i>Drosophila</i> Imaginal Rings. Genetics, 2018, 209, 829-843.	2.9	24
16	Differential Regulation of Cyclin E by Yorkie-Scalloped Signaling in Organ Development. G3: Genes, Genomes, Genetics, 2017, 7, 1049-1060.	1.8	19
17	Tissue-Intrinsic Tumor Hotspots: Terroir for Tumorigenesis. Trends in Cancer, 2017, 3, 259-268.	7.4	16
18	The SWI/SNF Complex Protein Snr1 Is a Tumor Suppressor in <i>Drosophila</i> Imaginal Tissues. Cancer Research. 2017. 77. 862-873.	0.9	13

#	Article	IF	CITATIONS
19	Systematic analysis reveals tumor-enhancing and -suppressing microRNAs in <i>Drosophila</i> epithelial tumors. Oncotarget, 2017, 8, 108825-108839.	1.8	6
20	Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment. PLoS Biology, 2016, 14, e1002537.	5.6	75
21	Maternal <scp>AP</scp> determinants in the <i>Drosophila</i> oocyte and embryo. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 562-581.	5.9	18
22	Automatic stage identification of Drosophila egg chamber based on DAPI images. Scientific Reports, 2016, 6, 18850.	3.3	64
23	The Ecdysone and Notch Pathways Synergistically Regulate Cut at the Dorsal–Ventral Boundary in Drosophila Wing Discs. Journal of Genetics and Genomics, 2016, 43, 179-186.	3.9	12
24	RNA helicase Belle/DDX3 regulates transgene expression in Drosophila. Developmental Biology, 2016, 412, 57-70.	2.0	20
25	A large-scale in vivo RNAi screen to identify genes involved in Notch-mediated follicle cell differentiation and cell cycle switches. Scientific Reports, 2015, 5, 12328.	3.3	25
26	Ligand-Independent Mechanisms of Notch Activity. Trends in Cell Biology, 2015, 25, 697-707.	7.9	64
27	Analysis of Cell Cycle Switches in Drosophila Oogenesis. Methods in Molecular Biology, 2015, 1328, 207-216.	0.9	22
28	Histone chaperone CAF-1: essential roles in multi-cellular organism development. Cellular and Molecular Life Sciences, 2015, 72, 327-337.	5.4	21
29	E(y)1/TAF9 mediates the transcriptional output of Notch signaling in Drosophila. Journal of Cell Science, 2014, 127, 3830-9.	2.0	13
30	Regulation of broad by the Notch pathway affects timing of follicle cell development. Developmental Biology, 2014, 392, 52-61.	2.0	30
31	Compensatory cellular hypertrophy: the other strategy for tissue homeostasis. Trends in Cell Biology, 2014, 24, 230-237.	7.9	42
32	Cis-interactions between Notch and its ligands block ligand-independent Notch activity. ELife, 2014, 3, .	6.0	45
33	E(y)1/TAF9 mediates the transcriptional output of Notch signaling in <i>Drosophila</i> . Development (Cambridge), 2014, 141, e1805-e1805.	2.5	Ο
34	CAF-1 promotes Notch signaling through epigenetic control of target gene expression during <i>Drosophila</i> development. Development (Cambridge), 2013, 140, 3635-3644.	2.5	28
35	Efficient EGFR signaling and dorsal–ventral axis patterning requires syntaxin dependent Gurken trafficking. Developmental Biology, 2013, 373, 349-358.	2.0	9
36	Tissue Repair through Cell Competition and Compensatory Cellular Hypertrophy in Postmitotic Epithelia. Developmental Cell, 2013, 25, 350-363.	7.0	130

#	Article	IF	CITATIONS
37	The microRNA miR-7 regulates Tramtrack69 in a developmental switch in <i>Drosophila</i> follicle cells. Development (Cambridge), 2013, 140, 897-905.	2.5	24
38	Prp22 and Spliceosome Components Regulate Chromatin Dynamics in Germ-Line Polyploid Cells. PLoS ONE, 2013, 8, e79048.	2.5	5
39	The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development. Biology Open, 2012, 1, 182-196.	1.2	14
40	Cell competition and its implications for development and cancer. Journal of Genetics and Genomics, 2011, 38, 483-495.	3.9	65
41	Molecular genetics of cancer and tumorigenesis: Drosophila models. Journal of Genetics and Genomics, 2011, 38, 429-430.	3.9	2
42	At the crossroads of differentiation and proliferation: Precise control of cell ycle changes by multiple signaling pathways in <i>Drosophila</i> follicle cells. BioEssays, 2011, 33, 124-134.	2.5	93
43	The microRNA pathway regulates the temporal pattern of Notch signaling in <i>Drosophila</i> follicle cells. Development (Cambridge), 2011, 138, 1737-1745.	2.5	40
44	Involvement of Lgl and Mahjong/VprBP in Cell Competition. PLoS Biology, 2010, 8, e1000422.	5.6	154
45	<i>poly</i> is required for nurse cell chromosome dispersal and oocyte polarity in Drosophila. Fly, 2010, 4, 128-136.	1.7	5
46	Kibra Functions as a Tumor Suppressor Protein that Regulates Hippo Signaling in Conjunction with Merlin and Expanded. Developmental Cell, 2010, 18, 288-299.	7.0	439
47	Notch Signaling and Developmental Cell-Cycle Arrest in Drosophila Polar Follicle Cells. Molecular Biology of the Cell, 2009, 20, 5064-5073.	2.1	25
48	Par-1 and Tau regulate the anterior–posterior gradient of microtubules in Drosophila oocytes. Developmental Biology, 2009, 327, 458-464.	2.0	19
49	Lgl and its phosphorylation by aPKC regulate oocyte polarity formation in Drosophila. Development (Cambridge), 2008, 135, 463-471.	2.5	61
50	Regulation of the endocycle/gene amplification switch by Notch and ecdysone signaling. Journal of Cell Biology, 2008, 182, 885-896.	5.2	84
51	The Hippo Pathway Promotes Notch Signaling in Regulation of Cell Differentiation, Proliferation, and Oocyte Polarity. PLoS ONE, 2008, 3, e1761.	2.5	102
52	Cell–cell communication and axis specification in the Drosophila oocyte. Developmental Biology, 2007, 311, 1-10.	2.0	36
53	Hindsight Mediates the Role of Notch in Suppressing Hedgehog Signaling and Cell Proliferation. Developmental Cell, 2007, 12, 431-442.	7.0	153
54	Perlecan and Dystroglycan act at the basal side of the Drosophila follicular epithelium to maintain epithelial organization. Development (Cambridge), 2006, 133, 3805-3815.	2.5	104

#	Article	IF	CITATIONS
55	Dystroglycan down-regulation links EGF receptor signaling and anterior-posterior polarity formation in the Drosophila oocyte. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12775-12780.	7.1	29
56	Notch-dependent downregulation of the homeodomain gene cut is required for the mitotic cycle/endocycle switch and cell differentiation in Drosophila follicle cells. Development (Cambridge), 2005, 132, 4299-4308.	2.5	128
57	Notch-Dependent Fizzy-Related/Hec1/Cdh1 Expression Is Required for the Mitotic-to-Endocycle Transition in Drosophila Follicle Cells. Current Biology, 2004, 14, 630-636.	3.9	99
58	Dystroglycan is required for polarizing the epithelial cells and the oocyte inDrosophila. Development (Cambridge), 2003, 130, 173-184.	2.5	156
59	Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in <i>Drosophila</i> follicle cells. Development (Cambridge), 2001, 128, 4737-4746.	2.5	201
60	The homeobox gene mirror links EGF signalling to embryonic dorso-ventral axis formation through Notch activation. Nature Genetics, 2000, 24, 429-433.	21.4	81
61	Laminin A is required for follicle cell–oocyte signaling that leads to establishment of the anterior–posterior axis in Drosophila. Current Biology, 2000, 10, 683-686.	3.9	46
62	The Function of the Broad-Complex During Drosophila melanogaster Oogenesis. Genetics, 1999, 153, 1371-1383.	2.9	94