Johnna S Temenoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9603610/publications.pdf Version: 2024-02-01

IOHNNA S TEMENOFE

#	Article	IF	CITATIONS
1	Review: tissue engineering for regeneration of articular cartilage. Biomaterials, 2000, 21, 431-440.	5.7	954
2	Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials, 2000, 21, 2405-2412.	5.7	509
3	Biomaterials and bone mechanotransduction. Biomaterials, 2001, 22, 2581-2593.	5.7	426
4	Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials, 2007, 28, 3217-3227.	5.7	320
5	Effect of Swelling Ratio of Injectable Hydrogel Composites on Chondrogenic Differentiation of Encapsulated Rabbit Marrow Mesenchymal Stem Cells In Vitro. Biomacromolecules, 2009, 10, 541-546.	2.6	319
6	Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials, 2005, 26, 7095-7103.	5.7	270
7	Engineering Orthopedic Tissue Interfaces. Tissue Engineering - Part B: Reviews, 2009, 15, 127-141.	2.5	265
8	Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. International Wound Journal, 2013, 10, 493-500.	1.3	245
9	Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. Journal of Biomedical Materials Research Part B, 2002, 59, 429-437.	3.0	233
10	Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis and Cartilage, 2005, 13, 297-309.	0.6	172
11	Thermally Cross-Linked Oligo(poly(ethylene glycol) fumarate) Hydrogels Support Osteogenic Differentiation of Encapsulated Marrow Stromal Cells In Vitro. Biomacromolecules, 2004, 5, 5-10.	2.6	144
12	In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. Journal of Biomedical Materials Research Part B, 2004, 70A, 235-244.	3.0	122
13	Osteogenic differentiation of rat bone marrow stromal cells cultured on Arg–Cly–Asp modified hydrogels without dexamethasone and β-glycerol phosphate. Biomaterials, 2005, 26, 3645-3654.	5.7	112
14	In Vitro Cytotoxicity of Redox Radical Initiators for Cross-Linking of Oligo(poly(ethylene glycol)) Tj ETQq0 0 0 rg	BT /Oyerlo 2.6	ock 107 ^{Tf 50 22}
15	Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials, 2007, 28, 187-202.	5.7	101
16	In Vitro Cytotoxicity of Unsaturated Oligo[poly(ethylene glycol) fumarate] Macromers and Their Cross-Linked Hydrogels. Biomacromolecules, 2003, 4, 552-560.	2.6	99
17	Development of nano- and microscale chondroitin sulfate particles for controlled growth factor delivery. Acta Biomaterialia, 2011, 7, 986-995.	4.1	94
18	Molecular engineering of glycosaminoglycan chemistry for biomolecule delivery. Acta Biomaterialia, 2014, 10, 1705-1719.	4.1	89

JOHNNA S TEMENOFF

#	Article	IF	CITATIONS
19	Heparin microparticle effects on presentation and bioactivity of bone morphogenetic protein-2. Biomaterials, 2014, 35, 7228-7238.	5.7	88
20	Cyclic Tensile Culture Promotes Fibroblastic Differentiation of Marrow Stromal Cells Encapsulated in Poly(Ethylene Glycol)-Based Hydrogels. Tissue Engineering - Part A, 2010, 16, 3457-3466.	1.6	75
21	The effect of desulfation of chondroitin sulfate on interactions with positively charged growth factors and upregulation of cartilaginous markers in encapsulated MSCs. Biomaterials, 2013, 34, 5007-5018.	5.7	67
22	PEG-based hydrogels with tunable degradation characteristics to control delivery of marrow stromal cells for tendon overuse injuries. Acta Biomaterialia, 2011, 7, 959-966.	4.1	65
23	Hydrogel Culture Surface Stiffness Modulates Mesenchymal Stromal Cell Secretome and Alters Senescence. Tissue Engineering - Part A, 2020, 26, 1259-1271.	1.6	42
24	Cyclic tension promotes fibroblastic differentiation of human MSCs cultured on collagen-fibre scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 989-999.	1.3	39
25	Sub-nanoliter metabolomics via mass spectrometry to characterize volume-limited samples. Nature Communications, 2020, 11, 5625.	5.8	39
26	Dual Affinity Heparin-Based Hydrogels Achieve Pro-Regenerative Immunomodulation and Microvascular Remodeling. ACS Biomaterials Science and Engineering, 2018, 4, 1241-1250.	2.6	36
27	Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs. Biomaterials, 2004, 25, 5809-5819.	5.7	33
28	Effect of Selective Heparin Desulfation on Preservation of Bone Morphogenetic Protein-2 Bioactivity after Thermal Stress. Bioconjugate Chemistry, 2015, 26, 286-293.	1.8	31
29	On the toughness of photopolymerizable (meth)acrylate networks for biomedical applications. Journal of Applied Polymer Science, 2009, 114, 2711-2722.	1.3	30
30	Long-Term Spatially Defined Coculture Within Three-Dimensional Photopatterned Hydrogels. Tissue Engineering - Part C: Methods, 2010, 16, 1621-1628.	1.1	29
31	Differentiation of mesenchymal stem cells in heparin-containing hydrogels via coculture with osteoblasts. Cell and Tissue Research, 2012, 347, 589-601.	1.5	29
32	Interactions between mesenchymal stem cells, adipocytes, and osteoblasts in a 3D tri-culture model of hyperglycemic conditions in the bone marrow microenvironment. Integrative Biology (United) Tj ETQq0 0 0 rgB	[/Ovværlock	२ 10वर्ग 50 217
33	Intra-articular TSG-6 delivery from heparin-based microparticles reduces cartilage damage in a rat model of osteoarthritis. Biomaterials Science, 2018, 6, 1159-1167.	2.6	28
34	Chondroitin Sulfate Microparticles Modulate Transforming Growth Factor-β1-Induced Chondrogenesis of Human Mesenchymal Stem Cell Spheroids. Cells Tissues Organs, 2014, 199, 117-130.	1.3	27
35	Hydrolysis and sulfation pattern effects on release of bioactive bone morphogenetic protein-2 from heparin-based microparticles. Journal of Materials Chemistry B, 2015, 3, 8001-8009.	2.9	27
36	Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol. Acta Biomaterialia, 2009, 5, 570-579.	4.1	26

#	Article	IF	CITATIONS
07	Effect of drying history on swelling properties and cell attachment to oligo(poly(ethylene glycol)) Tj ETQq1 1 0	.784314 rg	BT /Overlock
37	Polymer Edition, 2003, 14, 989-1004.	1.9	20
38	Modulation of Mesenchymal Stem Cell Shape in Enzyme-Sensitive Hydrogels Is Decoupled from Upregulation of Fibroblast Markers Under Cyclic Tension. Tissue Engineering - Part A, 2012, 18, 2365-2375.	1.6	25
39	Heparin-based hydrogels with tunable sulfation & degradation for anti-inflammatory small molecule delivery. Biomaterials Science, 2016, 4, 1371-1380.	2.6	24
40	Microparticle-mediated sequestration of cell-secreted proteins to modulate chondrocytic differentiation. Acta Biomaterialia, 2018, 68, 125-136.	4.1	22
41	Cell Surface Access Is Modulated by Tethered Bottlebrush Proteoglycans. Biophysical Journal, 2016, 110, 2739-2750.	0.2	19
42	Multiomics characterization of mesenchymal stromal cells cultured in monolayer and as aggregates. Biotechnology and Bioengineering, 2020, 117, 1761-1778.	1.7	18
43	Core-shell microparticles for protein sequestration and controlled release of a protein-laden core. Acta Biomaterialia, 2017, 56, 91-101.	4.1	17
44	Three-Dimensional <i>In Vitro</i> Tri-Culture Platform to Investigate Effects of Crosstalk Between Mesenchymal Stem Cells, Osteoblasts, and Adipocytes. Tissue Engineering - Part A, 2012, 18, 1686-1697.	1.6	16
45	Development of 3D hydrogel culture systems with onâ€demand cell separation. Biotechnology Journal, 2013, 8, 485-495.	1.8	16
46	Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. , 2002, 59, 429.		16
47	Supraspinatus tendon overuse results in degenerative changes to tendon insertion region and adjacent humeral cartilage in a rat model. Journal of Orthopaedic Research, 2017, 35, 1910-1918.	1.2	15
48	Cathepsins in Rotator Cuff Tendinopathy: Identification in Human Chronic Tears and Temporal Induction in a Rat Model. Annals of Biomedical Engineering, 2015, 43, 2036-2046.	1.3	14
49	Localized SDF-1α Delivery Increases Pro-Healing Bone Marrow-Derived Cells in the Supraspinatus Muscle Following Severe Rotator Cuff Injury. Regenerative Engineering and Translational Medicine, 2018, 4, 92-103.	1.6	13
50	Cell number and chondrogenesis in human mesenchymal stem cell aggregates is affected by the sulfation level of heparin used as a cell coating. Journal of Biomedical Materials Research - Part A, 2016, 104, 1817-1829.	2.1	11
51	Sequential, but not Concurrent, Incubation of Cathepsin K and L with Type I Collagen Results in Extended Proteolysis. Scientific Reports, 2019, 9, 5399.	1.6	10
52	Fullâ€ŧhickness rotator cuff tear in rat results in distinct temporal expression of multiple proteases in tendon, muscle, and cartilage. Journal of Orthopaedic Research, 2019, 37, 490-502.	1.2	9
53	Culture Substrates for Improved Manufacture of Mesenchymal Stromal Cell Therapies. Advanced Healthcare Materials, 2021, 10, e2100016.	3.9	9
54	Growth Factor Immobilization Strategies for Musculoskeletal Disorders. Current Osteoporosis Reports, 2022, 20, 13-25.	1.5	6

JOHNNA S TEMENOFF

#	Article	IF	CITATIONS
55	Combination of Heparin Binding Peptide and Heparin Cell Surface Coatings for Mesenchymal Stem Cell Spheroid Assembly. Bioconjugate Chemistry, 2018, 29, 878-884.	1.8	5
56	Aggregation of bovine anterior cruciate ligament fibroblasts or marrow stromal cells promotes aggrecan production. Biotechnology and Bioengineering, 2011, 108, 151-162.	1.7	4
57	Injection of Micronized Human Amnion/Chorion Membrane Results in Increased Early Supraspinatus Muscle Regeneration in a Chronic Model of Rotator Cuff Tear. Annals of Biomedical Engineering, 2021, 49, 3698-3710.	1.3	4
58	Special Collection: Emerging Concepts in Three-Dimensional Microtissues. Tissue Engineering - Part A, 2016, 22, 3-4.	1.6	2
59	2011 panel on developing a biomaterials curriculum. Journal of Biomedical Materials Research - Part A, 2012, 100A, 802-816.	2.1	0
60	Special issue on Drug Delivery for Musculoskeletal Applications. Acta Biomaterialia, 2019, 93, 1.	4.1	0
61	Consecutive, But Not Concurrent, Cathepsin Incubation with Type I Collagen Results in Extended Proteolysis. FASEB Journal, 2018, 32, 414.4.	0.2	0