
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/960360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Embryonic Stem Cell–Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance Cardiac Function Following Myocardial Infarction. Circulation Research, 2015, 117, 52-64.	2.0	598
2	Myocardial AKT: The Omnipresent Nexus. Physiological Reviews, 2011, 91, 1023-1070.	13.1	196
3	More Than Tiny Sacks. Circulation Research, 2016, 118, 330-343.	2.0	159
4	Human Cardiac Progenitor Cells Engineered With Pim-I Kinase Enhance Myocardial Repair. Journal of the American College of Cardiology, 2012, 60, 1278-1287.	1.2	140
5	Bone marrow derived mesenchymal stem cells from aged mice have reduced wound healing, angiogenesis, proliferation and antiâ€apoptosis capabilities. Cell Biology International, 2012, 36, 747-753.	1.4	113
6	Rejuvenation of Human Cardiac Progenitor Cells With Pim-1 Kinase. Circulation Research, 2013, 113, 1169-1179.	2.0	110
7	Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice. Journal of Translational Medicine, 2013, 11, 78.	1.8	108
8	Therapeutic inhibition of miR-375 attenuates post-myocardial infarction inflammatory response and left ventricular dysfunction via PDK-1-AKT signalling axis. Cardiovascular Research, 2017, 113, 938-949.	1.8	101
9	Growth Factor Preconditioning Increases the Function of Diabetes-Impaired Mesenchymal Stem Cells. Stem Cells and Development, 2011, 20, 67-75.	1.1	93
10	Hrd1 and ER-Associated Protein Degradation, ERAD, Are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes. Circulation Research, 2015, 117, 536-546.	2.0	89
11	Repair of senescent myocardium by mesenchymal stem cells is dependent on the age of donor mice. Journal of Cellular and Molecular Medicine, 2011, 15, 1515-1527.	1.6	82
12	Transient Introduction of miR-294 in the Heart Promotes Cardiomyocyte Cell Cycle Reentry After Injury. Circulation Research, 2019, 125, 14-25.	2.0	81
13	Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. European Heart Journal, 2011, 32, 2179-2188.	1.0	79
14	Low-Intensity Ultrasound-Induced Anti-inflammatory Effects Are Mediated by Several New Mechanisms Including Gene Induction, Immunosuppressor Cell Promotion, and Enhancement of Exosome Biogenesis and Docking. Frontiers in Physiology, 2017, 8, 818.	1.3	70
15	Negative Regulation of miR-375 by Interleukin-10 Enhances Bone Marrow-Derived Progenitor Cell-Mediated Myocardial Repair and Function After Myocardial Infarction. Stem Cells, 2015, 33, 3519-3529.	1.4	63
16	Nucleolar stress is an early response to myocardial damage involving nucleolar proteins nucleostemin and nucleophosmin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6145-6150.	3.3	62
17	Enhanced hepatic differentiation of mesenchymal stem cells after pretreatment with injured liver tissue. Differentiation, 2011, 81, 42-48.	1.0	61
18	Enhanced Cardiac Regenerative Ability of Stem Cells After Ischemia-Reperfusion Injury. Journal of the American College of Cardiology, 2015, 66, 2214-2226.	1.2	60

#	Article	IF	CITATIONS
19	Nitric oxide augments mesenchymal stem cell ability to repair liver fibrosis. Journal of Translational Medicine, 2012, 10, 75.	1.8	59
20	Î ² -Adrenergic Regulation of Cardiac Progenitor Cell Death Versus Survival and Proliferation. Circulation Research, 2013, 112, 476-486.	2.0	59
21	Interleukin-10 Inhibits Bone Marrow Fibroblast Progenitor Cell–Mediated Cardiac Fibrosis in Pressure-Overloaded Myocardium. Circulation, 2017, 136, 940-953.	1.6	57
22	Mesenchymal stem cells conditioned with glucose depletion augments their ability to repairâ€infarcted myocardium. Journal of Cellular and Molecular Medicine, 2012, 16, 2518-2529.	1.6	51
23	Preconditioning diabetic mesenchymal stem cells with myogenic medium increases their ability to repair diabetic heart. Stem Cell Research and Therapy, 2013, 4, 58.	2.4	49
24	Extracellular Vesicles Released by Human Induced-Pluripotent Stem Cell-Derived Cardiomyocytes Promote Angiogenesis. Frontiers in Physiology, 2018, 9, 1794.	1.3	47
25	Restoration of Hydrogen Sulfide Production in Diabetic Mice Improves Reparative Function of Bone Marrow Cells. Circulation, 2016, 134, 1467-1483.	1.6	45
26	Sirtuinâ€6 deficiency exacerbates diabetesâ€induced impairment of wound healing. Experimental Dermatology, 2015, 24, 773-778.	1.4	37
27	Interleukin-10 inhibits chronic angiotensin II-induced pathological autophagy. Journal of Molecular and Cellular Cardiology, 2015, 89, 203-213.	0.9	36
28	HDL subclass proteomic analysis and functional implication of protein dynamic change during HDL maturation. Redox Biology, 2019, 24, 101222.	3.9	35
29	Healing the Broken Heart; The Immunomodulatory Effects of Stem Cell Therapy. Frontiers in Immunology, 2020, 11, 639.	2.2	29
30	Pim-1 kinase inhibits pathological injury by promoting cardioprotective signaling. Journal of Molecular and Cellular Cardiology, 2011, 51, 554-558.	0.9	28
31	Mesenchymal Stem Cells Pretreated with HGF and FGF4 Can Reduce Liver Fibrosis in Mice. Stem Cells International, 2015, 2015, 1-12.	1.2	28
32	Cardiac cell-derived exosomes: changing face of regenerative biology. European Heart Journal, 2017, 38, ehw324.	1.0	27
33	Stem Cell Exosomes: Cell-FreeTherapy for Organ Repair. Methods in Molecular Biology, 2017, 1553, 315-321.	0.4	27
34	The Regulatory Role of T Cell Responses in Cardiac Remodeling Following Myocardial Infarction. International Journal of Molecular Sciences, 2020, 21, 5013.	1.8	27
35	Stem Cell Metabolism: Powering Cell-Based Therapeutics. Cells, 2020, 9, 2490.	1.8	27
36	IL-10 Accelerates Re-Endothelialization and Inhibits Post-Injury Intimal Hyperplasia following Carotid Artery Denudation. PLoS ONE, 2016, 11, e0147615.	1.1	24

#	Article	IF	CITATIONS
37	Extracellular vesicle-mediated bidirectional communication between heart and other organs. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H769-H784.	1.5	19
38	Molecular processes mediating hyperhomocysteinemia-induced metabolic reprogramming, redox regulation and growth inhibition in endothelial cells. Redox Biology, 2021, 45, 102018.	3.9	16
39	Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H684-H701.	1.5	16
40	N-Acetyl cysteine protects diabetic mouse derived mesenchymal stem cells from hydrogen-peroxide-induced injury: A novel hypothesis for autologous stem cell transplantation. Journal of the Chinese Medical Association, 2016, 79, 122-129.	0.6	15
41	Cardiac Progenitor Cells Engineered With βARKct Have Enhanced β-Adrenergic Tolerance. Molecular Therapy, 2014, 22, 178-185.	3.7	12
42	Cortical Bone Derived Stem Cells Modulate Cardiac Fibroblast Response via miR-18a in the Heart After Injury. Frontiers in Cell and Developmental Biology, 2020, 8, 494.	1.8	11
43	Differential microRNA-21 and microRNA-221 Upregulation in the Biventricular Failing Heart Reveals Distinct Stress Responses of Right Versus Left Ventricular Fibroblasts. Circulation: Heart Failure, 2020, 13, e006426.	1.6	11
44	Cardiac Remodeling During Pregnancy With Metabolic Syndrome. Circulation, 2021, 143, 699-712.	1.6	11
45	c-kit ⁺ Cardiac Stem Cells. Circulation Research, 2016, 118, 783-785.	2.0	10
46	Uncoupling protein 2-mediated metabolic adaptations define cardiac cell function in the heart during transition from young to old age. Stem Cells Translational Medicine, 2021, 10, 144-156.	1.6	10
47	LIN28a induced metabolic and redox regulation promotes cardiac cell survival in the heart after ischemic injury. Redox Biology, 2021, 47, 102162.	3.9	10
48	Characterization of βARKct engineered cellular extracellular vesicles and model specific cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1276-H1289.	1.5	9
49	IGF-1 and G-CSF complement each other in BMSC migration towards infarcted myocardium in a novel in vitro model. Cell Biology International, 2009, 33, 650-657.	1.4	8
50	UCP2 modulates cardiomyocyte cell cycle activity, acetyl-CoA and histone acetylation in response to moderate hypoxia. JCI Insight, 0, , .	2.3	8
51	Aging in reverse: Reactivating developmental signaling for cardiomyocyte proliferation. Journal of Molecular and Cellular Cardiology, 2021, 154, 1-5.	0.9	5
52	Transcriptional Profiling of Cardiac Cells Links Age-Dependent Changes in Acetyl-CoA Signaling to Chromatin Modifications. International Journal of Molecular Sciences, 2021, 22, 6987.	1.8	3
53	Basic Cardiovascular Sciences Conference 2016. Circulation Research, 2016, 119, 708-710.	2.0	2
54	Bmi1 Augments Proliferation and Survival of Cortical Bone-Derived Stem Cells after Injury through Novel Epigenetic Signaling via Histone 3 Regulation. International Journal of Molecular Sciences, 2021, 22, 7813.	1.8	1

#	Article	IF	CITATIONS
55	Stem Cells and Cardiac Repair. Stem Cells International, 2015, 2015, 1-2.	1.2	Ο
56	Abstract P033: β-Adrenergic Signaling Mediates Cardiac Stem Cell Survival. Circulation Research, 2011, 109, .	2.0	0
57	Abstract P134: Synoviolin Is a Stress-Inducible Endoplasmic/Sarcoplasmic Reticulum E3 Ubiquitin Ligase that Preserves Cardiac Function. Circulation Research, 2011, 109, .	2.0	О
58	Abstract 18: Synoviolin, an E3 Ubiquitin Ligase, Modulates Cardiac Myocyte Size and Restores Heart Function in Hypertrophic Cardiomyopathy. Circulation Research, 2012, 111, .	2.0	0
59	Abstract 65: β-Adrenergic Signaling Promotes Survival and Proliferation of Mouse Cardiac Progenitor Cells Prior to Lineage Commitment. Circulation Research, 2012, 111, .	2.0	Ο
60	Abstract 62: Pim-1 Engineering of Human CPCs Increases Telomere Length from Aged Patients with Heart Failure. Circulation Research, 2012, 111, .	2.0	0
61	Abstract 135: Pim-1 Modification Reverses Senescent Phenotype Of Hcpcs From Patients With Heart Disease. Circulation Research, 2013, 113, .	2.0	Ο
62	Abstract 225: Chronic Alcohol Consumption Alters the Epigenetic Fingerprint of Cardiac Cell Types. Circulation Research, 2014, 115, .	2.0	0
63	Abstract 152: IL-10 Inhibits Angiotensin II-induced Pathological Autophagy in Myocardium Circulation Research, 2014, 115, .	2.0	Ο
64	Abstract 153: IL-10 Accelerates Re-Endothelialization and Inhibits Post-injury Intimal Hyperplasia following Carotid Artery Denudation by Attenuating TNF-alpha-induced Endothelial Cell Dysfunction. Circulation Research, 2014, 115, .	2.0	0
65	Abstract 129: Embryonic Stem Cell Derived Exosomes Revive Endogenous Repair Mechanisms In Failing Heart. Circulation Research, 2014, 115, .	2.0	0
66	Abstract 3: Il-10 Regulated Mir-375 Enhances Endothelial Progenitor Cell Mediated Myocardial Repair And Survival After Myocardial Infarction Circulation Research, 2014, 115, .	2.0	0
67	Abstract 16788: Delivery of Pluripotent Stem Cell Specific Microrna-294 Induces Cardiomyocyte Proliferation Augmenting Cardiac Function After Myocardial Infarction. Circulation, 2014, 130, .	1.6	Ο
68	Abstract 106: Pluripotent Stem Cell Microrna-294 Induces Cardiomyocyte Proliferation and Augments Cardiac Function After Myocardial Infarction. Circulation Research, 2015, 117, .	2.0	0
69	Abstract 408: Myocardial Knockdown of Mir-375 Attenuates Post-mi Inflammatory Response and Left Ventricular Dysfunction via Pdk-1-akt Signaling Axis. Circulation Research, 2015, 117, .	2.0	Ο
70	Abstract 17383: Transplantation of Anti-microRNA-377-modified Bone Marrow-derived Progenitor Cells Attenuates Myocardial Infarction-induced Lv Dysfunction in Mouse. Circulation, 2015, 132, .	1.6	0
71	Abstract 12739: Microrna-294 Modulates Cardiomyocyte Proliferation Following Myocardial Infarction. Circulation, 2015, 132, .	1.6	0
72	Abstract 220: Epigenetic Reprogramming Rescues Diabetic Endothelial Progenitor Cell Dysfunctions and Enhances Their Reparative Activities in Ischemic Tissue Repair. Circulation Research, 2016, 119, .	2.0	0

#	Article	lF	CITATIONS
73	Abstract 24: Hydrogen Sulfide Potentiates Bone Marrow-derived Angiogenic Progenitor Cell-mediated Ischemic Limb Angiogenesis in Diabetic Animals. Circulation Research, 2016, 119, .	2.0	0
74	Abstract 200: Role of Silent Mating Type Information Regulation 2 Homolog - 6 in Wound Healing in Diabetes. Circulation Research, 2016, 119, .	2.0	0
75	Abstract 2: Cortical Bone Stem Cells Derived Exosomes as Potent Modulator of Cardiac Immune Response and Repair After Injury. Circulation Research, 2016, 119, .	2.0	0
76	Abstract 139: Role of Histone Lysine Demethylase PHF8 in Epigenetic Regulation of Embryonic Stem Cell Cardiac Differentiation. Circulation Research, 2016, 119, .	2.0	0
77	Abstract 298: Pluripotent Stem Cell Microrna-294 as a Mediator of Cardiac Proliferative Response After Myocardial Injury. Circulation Research, 2016, 119, .	2.0	0
78	Abstract 40: Interleukin-10 Deficiency Impairs Reparative Properties of Bone Marrow-derived Endothelial Progenitor Cell Exosomes Function in Ischemic Myocardium. Circulation Research, 2016, 119, .	2.0	0
79	Abstract 364: Cortical Bone Stem Cells Derived Exosomes as Potent Modulator of Cardiac Immune Response and Repair After Injury. Circulation Research, 2016, 119, .	2.0	0
80	Abstract 343: Lin28 Enhances Cardiac Repair by Reprogramming Metabolism of Cardiac Progenitor Cells. Circulation Research, 2018, 123, .	2.0	0
81	Abstract 414: Postnatal Cardiac Tissue Harbors Progenitor Cells With Unique Metabolic Profile. Circulation Research, 2019, 125, .	2.0	0
82	Abstract 155: Lin28 Enhances Cardiac Progenitor Cell Ability to Repair the Heart by Reprogramming Cellular Metabolism. Circulation Research, 2019, 125, .	2.0	0
83	Abstract 723: Cortical Bone Derived Stem Cells Modulates T Cell Response After Myocardial Injury. Circulation Research, 2019, 125, .	2.0	0
84	Cardiomyocyte Krüppelâ€like Factor 5 Regulates Ceramide Biosynthesis and miRâ€30 Suppression in Ischemic Cardiomyopathy and Promotes Systolic Dysfunction. FASEB Journal, 2020, 34, 1-1.	0.2	0
85	Abstract 322: Chamber-specific Mitochondrial Remodeling in Atrial Fibrillation. Circulation Research, 2020, 127, .	2.0	0
86	Stem cell-derived paracrine factors modulate cardiac repair. , 2020, , 116-145.		0
87	Abstract MP206: Cortical Bone Derived Stem Cells Modulate The Adaptive Immune Response Post-MI. Circulation Research, 2021, 129, .	2.0	0
88	Abstract 16482: Cardiac Remodeling During Pregnancy With Challenge: A Prologue of Pathological Remodeling. Circulation, 2020, 142, .	1.6	0
89	Editorial: Metabolic Regulation of Cardiac and Vascular Cell Function: Physiological and Pathophysiological Implications. Frontiers in Physiology, 2022, 13, 849869.	1.3	0