


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9603515/publications.pdf Version: 2024-02-01



Уг Сын

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Identification of a major locus for flowering pattern sheds light on plant architecture<br>diversification in cultivated peanut. Theoretical and Applied Genetics, 2022, 135, 1767-1777.                                                | 3.6 | 4         |
| 2  | Characterization of peanut lines with interspecific introgressions conferring late leaf spot resistance. Crop Science, 2021, 61, 1724-1738.                                                                                             | 1.8 | 13        |
| 3  | Homoeologous recombination is recurrent in the nascent synthetic allotetraploid <i>Arachis<br/>ipaënsis</i> × <i>Arachis correntina</i> 4x and its derivatives. G3: Genes, Genomes, Genetics, 2021, 11, .                               | 1.8 | 2         |
| 4  | Morphological and reproductive characterization of nascent allotetraploids cross-compatible with cultivated peanut (Arachis hypogaea L.). Genetic Resources and Crop Evolution, 2021, 68, 2883-2896.                                    | 1.6 | 2         |
| 5  | Identification of consistent QTL for time to maturation in Virginia-type Peanut (Arachis hypogaea L.).<br>BMC Plant Biology, 2021, 21, 186.                                                                                             | 3.6 | 7         |
| 6  | Validation of resistance to rootâ€knot nematode incorporated in peanut from the wild relative<br><i>Arachis stenosperma</i> . Agronomy Journal, 2021, 113, 2293-2302.                                                                   | 1.8 | 7         |
| 7  | Registration of GAâ€BatSten1 and GAâ€MagSten1, two induced allotetraploids derived from peanut wild relatives with superior resistance to leaf spots, rust, and rootâ€knot nematode. Journal of Plant Registrations, 2021, 15, 372-378. | 0.5 | 9         |
| 8  | Imagedâ€based phenotyping accelerated QTL mapping and qtlÂ×Âenvironment interaction analysis of testa<br>colour in peanut ( <i>Arachis hypogaea</i> ). Plant Breeding, 2021, 140, 884-895.                                              | 1.9 | 4         |
| 9  | Registration of three peanut allotetraploid interspecific hybrids resistant to late leaf spot disease and tomato spotted wilt. Journal of Plant Registrations, 2021, 15, 562-572.                                                       | 0.5 | 7         |
| 10 | Development and applications of KASP markers distinguishing A- and B/K-genomes of Arachis.<br>Euphytica, 2021, 217, 1.                                                                                                                  | 1.2 | 1         |
| 11 | Legacy genetics of <i>Arachis cardenasii</i> in the peanut crop shows the profound benefits of<br>international seed exchange. Proceedings of the National Academy of Sciences of the United States of<br>America, 2021, 118, .         | 7.1 | 18        |
| 12 | Anatomical characteristics correlated to peg strength in Arachis. Peanut Science, 2021, 48, 97-112.                                                                                                                                     | 0.1 | 1         |
| 13 | De novo QTL-seq Identifies Loci Linked to Blanchability in Peanut (Arachis hypogaea) and Refines<br>Previously Identified QTL with Low Coverage Sequence. Agronomy, 2021, 11, 2201.                                                     | 3.0 | 6         |
| 14 | Development and Genetic Characterization of Peanut Advanced Backcross Lines That Incorporate<br>Root-Knot Nematode Resistance From Arachis stenosperma. Frontiers in Plant Science, 2021, 12, 785358.                                   | 3.6 | 5         |
| 15 | Major seed size QTL on chromosome A05 of peanut (Arachis hypogaea) is conserved in the US mini core germplasm collection. Molecular Breeding, 2020, 40, 1.                                                                              | 2.1 | 19        |
| 16 | Nestedâ€association mapping (NAM)â€based genetic dissection uncovers candidate genes for seed and pod<br>weights in peanut ( <i>Arachis hypogaea</i> ). Plant Biotechnology Journal, 2020, 18, 1457-1471.                               | 8.3 | 65        |
| 17 | Genotypic Characterization of the U.S. Peanut Core Collection. G3: Genes, Genomes, Genetics, 2020, 10, 4013-4026.                                                                                                                       | 1.8 | 14        |
| 18 | Two New <i>Aspergillus flavus</i> Reference Genomes Reveal a Large Insertion Potentially<br>Contributing to Isolate Stress Tolerance and Aflatoxin Production. G3: Genes, Genomes, Genetics,<br>2020, 10, 3515-3531.                    | 1.8 | 15        |

Үе Сни

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Pod and Seed Trait QTL Identification To Assist Breeding for Peanut Market Preferences. G3: Genes,<br>Genomes, Genetics, 2020, 10, 2297-2315.                                                        | 1.8  | 22        |
| 20 | Quantitative trait loci sequencing–derived molecular markers for selection of stem rot resistance in peanut. Crop Science, 2020, 60, 2008-2018.                                                      | 1.8  | 12        |
| 21 | Mapping quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea). Theoretical and Applied Genetics, 2020, 133, 1201-1212. | 3.6  | 24        |
| 22 | Comparison of SNP Calling Pipelines and NGS Platforms to Predict the Genomic Regions Harboring Candidate Genes for Nodulation in Cultivated Peanut. Frontiers in Genetics, 2020, 11, 222.            | 2.3  | 7         |
| 23 | Major QTLs for Resistance to Early and Late Leaf Spot Diseases Are Identified on Chromosomes 3 and 5<br>in Peanut (Arachis hypogaea). Frontiers in Plant Science, 2019, 10, 883.                     | 3.6  | 40        |
| 24 | The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 2019, 51,<br>877-884.                                                                                      | 21.4 | 439       |
| 25 | Introgression Analysis and Morphological Characterization of an <i>Arachis hypogaea</i> × <i>A.<br/>diogoi</i> Interspecific Hybrid Derived Population. Crop Science, 2019, 59, 640-649.             | 1.8  | 4         |
| 26 | Machine Learning as an Effective Method for Identifying True Single Nucleotide Polymorphisms in<br>Polyploid Plants. Plant Genome, 2019, 12, 180023.                                                 | 2.8  | 50        |
| 27 | A new source of root-knot nematode resistance from Arachis stenosperma incorporated into allotetraploid peanut (Arachis hypogaea). Scientific Reports, 2019, 9, 17702.                               | 3.3  | 20        |
| 28 | QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut<br>(Arachis hypogaea L.). BMC Plant Biology, 2019, 19, 537.                                       | 3.6  | 54        |
| 29 | Highâ€density genetic map using wholeâ€genome resequencing for fine mapping and candidate gene<br>discovery for disease resistance in peanut. Plant Biotechnology Journal, 2018, 16, 1954-1967.      | 8.3  | 90        |
| 30 | Insight into Genes Regulating Postharvest Aflatoxin Contamination of Tetraploid Peanut from<br>Transcriptional Profiling. Genetics, 2018, 209, 143-156.                                              | 2.9  | 23        |
| 31 | Horizontal Transfer of Non-LTR Retrotransposons from Arthropods to Flowering Plants. Molecular<br>Biology and Evolution, 2018, 35, 354-364.                                                          | 8.9  | 41        |
| 32 | Genetic insight and mapping of the pod constriction trait in Virginia-type peanut. BMC Genetics, 2018, 19, 93.                                                                                       | 2.7  | 9         |
| 33 | Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for<br>Marker-Assisted Selection. Frontiers in Plant Science, 2018, 9, 83.                              | 3.6  | 118       |
| 34 | Phenotyping and genotyping parents of sixteen recombinant inbred peanut populations. Peanut<br>Science, 2018, 45, 1-11.                                                                              | 0.1  | 11        |
| 35 | Gene expression profiling describes the genetic regulation of Meloidogyne arenaria resistance in<br>Arachis hypogaea and reveals a candidate gene for resistance. Scientific Reports, 2017, 7, 1317. | 3.3  | 32        |
| 36 | Expression of the limitedâ€ŧranspiration trait under high vapour pressure deficit in peanut populations:<br>Runner and virginia types. Journal of Agronomy and Crop Science, 2017, 203, 295-300.     | 3.5  | 12        |

Үе Сни

| #  | Article                                                                                                                                                                                                                                | IF         | CITATIONS           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|
| 37 | Genome-wide SNP Genotyping Resolves Signatures of Selection and Tetrasomic Recombination in<br>Peanut. Molecular Plant, 2017, 10, 309-322.                                                                                             | 8.3        | 114                 |
| 38 | Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon<br>Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds. Toxins, 2017, 9, 218.                                                           | 3.4        | 20                  |
| 39 | Registration of â€~TifNVâ€High O/L' Peanut. Journal of Plant Registrations, 2017, 11, 228-230.                                                                                                                                         | 0.5        | 34                  |
| 40 | IntroMap: A Pipeline and Set of Diagnostic Diploid <i>Arachis</i> SNPs as a Tool for Mapping Alien<br>Introgressions in <i>Arachis hypogaea</i> . Peanut Science, 2017, 44, 66-73.                                                     | 0.1        | 23                  |
| 41 | Influence of Temperature on Susceptibility of CVS. Tifguard and Georgia-06G Peanut to Meloidogyne<br>arenaria. Journal of Nematology, 2017, 50, 33-40.                                                                                 | 0.9        | 3                   |
| 42 | The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 2016, 48, 438-446.                                                                                       | 21.4       | 761                 |
| 43 | Fine Phenotyping of Pod and Seed Traits in <i>Arachis</i> Germplasm Accessions Using Digital Image<br>Analysis. Peanut Science, 2015, 42, 65-73.                                                                                       | 0.1        | 6                   |
| 44 | A Technique to Study <i>Meloidogyne arenaria</i> Resistance in <i>Agrobacterium<br/>rhizogenes</i> -Transformed Peanut. Plant Disease, 2014, 98, 1292-1299.                                                                            | 1.4        | 18                  |
| 45 | Improvement of peanut (Arachis hypogaea L.) transformation efficiency and determination of<br>transgene copy number by relative quantitative real-time PCR. In Vitro Cellular and Developmental<br>Biology - Plant, 2013, 49, 266-275. | 2.1        | 18                  |
| 46 | Development and Phenotyping of Recombinant Inbred Line (RIL) Populations for Peanut ( <i>Arachis) Tj ETQqO O</i>                                                                                                                       | 0 rgBT /Ov | verlock 10 Tf<br>40 |
| 47 | Marker-Assisted Selection to Pyramid Nematode Resistance and the High Oleic Trait in Peanut. Plant<br>Genome, 2011, 4, 110-117.                                                                                                        | 2.8        | 160                 |
| 48 | Impact of Molecular Genetic Research on Peanut Cultivar Development. Agronomy, 2011, 1, 3-17.                                                                                                                                          | 3.0        | 26                  |
| 49 | Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot<br>nematode resistance gene. Molecular Breeding, 2010, 26, 357-370.                                                                | 2.1        | 109                 |
| 50 | Two Alleles of <i>ahFAD2B</i> Control the High Oleic Acid Trait in Cultivated Peanut. Crop Science, 2009, 49, 2029-2036.                                                                                                               | 1.8        | 109                 |
| 51 | Reduction of IgE Binding and Nonpromotion of Aspergillus flavus Fungal Growth by Simultaneously<br>Silencing Ara h 2 and Ara h 6 in Peanut. Journal of Agricultural and Food Chemistry, 2008, 56,<br>11225-11233.                      | 5.2        | 68                  |

| 52 | Resistance in Peanut Cultivars and Breeding Lines to Three Root-Knot Nematode Species. Plant Disease, 2008, 92, 631-638. | 1.4 | 10 |
|----|--------------------------------------------------------------------------------------------------------------------------|-----|----|
|    |                                                                                                                          |     |    |

| 53 | Development of a PCRâ€Based Molecular Marker to Select for Nematode Resistance in Peanut. Crop<br>Science, 2007, 47, 841-845. |  |  | 1.8 | 59 |
|----|-------------------------------------------------------------------------------------------------------------------------------|--|--|-----|----|
|    |                                                                                                                               |  |  | c   |    |

54Frequency of a Lossâ€ofâ€Function Mutation in Oleoylâ€PC Desaturase (<i>ahFAD2A</i>) in the Miniâ€Core of<br/>the U.S. Peanut Germplasm Collection. Crop Science, 2007, 47, 2372-2378.1.878

Үе Сни

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Bcl-xL transformed peanut (Arachis hypogaea L.) exhibits paraquat tolerance. Plant Cell Reports, 2007,<br>27, 85-92.                                                       | 5.6 | 21        |
| 56 | Use of green fluorescent protein as A non-destructive marker for peanut genetic transformation. In<br>Vitro Cellular and Developmental Biology - Plant, 2005, 41, 437-445. | 2.1 | 14        |
| 57 | Resistance to rust (Puccinia arachidis Speg.) identified in nascent allotetraploids cross-compatible with cultivated peanut (Arachis hypogaea L.). Peanut Science, O, , .  | 0.1 | 1         |
| 58 | Registration of TifGPâ€3 and TifGPâ€4 peanut germplasm lines. Journal of Plant Registrations, 0, , .                                                                       | 0.5 | 3         |
| 59 | Hypoallergenic Foods beyond Infant Formulas. , 0, , 285-308.                                                                                                               |     | 2         |
| 60 | Registration of two peanut recombinant inbred lines (TifGPâ€5 and TifGPâ€6) resistant to late leaf spot<br>disease. Journal of Plant Registrations, 0, , .                 | 0.5 | 1         |