Peter J M Valk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9603363/publications.pdf

Version: 2024-02-01

147 papers 13,476 citations

52 h-index 22808 112 g-index

147 all docs

147 docs citations

147 times ranked

13663 citing authors

#	Article	IF	CITATIONS
1	Prognostically Useful Gene-Expression Profiles in Acute Myeloid Leukemia. New England Journal of Medicine, 2004, 350, 1617-1628.	13.9	1,232
2	DNA Methylation Signatures Identify Biologically Distinct Subtypes in Acute Myeloid Leukemia. Cancer Cell, 2010, 17, 13-27.	7.7	737
3	Molecular Minimal Residual Disease in Acute Myeloid Leukemia. New England Journal of Medicine, 2018, 378, 1189-1199.	13.9	605
4	A Single Oncogenic Enhancer Rearrangement Causes Concomitant EVI1 and GATA2 Deregulation in Leukemia. Cell, 2014, 157, 369-381.	13.5	571
5	Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood, 2005, 106, 3747-3754.	0.6	545
6	Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood, 2009, 113, 3088-3091.	0.6	516
7	High Prognostic Impact of Flow Cytometric Minimal Residual Disease Detection in Acute Myeloid Leukemia: Data From the HOVON/SAKK AML 42A Study. Journal of Clinical Oncology, 2013, 31, 3889-3897.	0.8	392
8	MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood, 2008, 111, 5078-5085.	0.6	376
9	Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood, 2011, 117, 2469-2475.	0.6	341
10	High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood, 2003, 101, 837-845.	0.6	324
11	Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nature Medicine, 2016, 22, 792-799.	15.2	322
12	2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood, 2021, 138, 2753-2767.	0.6	305
13	Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica, 2009, 94, 131-134.	1.7	300
14	Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. British Journal of Haematology, 2003, 121, 775-777.	1.2	283
15	Base-Pair Resolution DNA Methylation Sequencing Reveals Profoundly Divergent Epigenetic Landscapes in Acute Myeloid Leukemia. PLoS Genetics, 2012, 8, e1002781.	1.5	263
16	High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood, 2008, 111, 4329-4337.	0.6	251
17	NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood, 2011, 118, 3645-3656.	0.6	250
18	Tribbles homolog 2 inactivates C/EBPÎ \pm and causes acute myelogenous leukemia. Cancer Cell, 2006, 10, 401-411.	7.7	232

#	Article	IF	CITATIONS
19	High <i>EVI1</i> Expression Predicts Outcome in Younger Adult Patients With Acute Myeloid Leukemia and Is Associated With Distinct Cytogenetic Abnormalities. Journal of Clinical Oncology, 2010, 28, 2101-2107.	0.8	222
20	Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood, 2012, 119, 5824-5831.	0.6	221
21	Clinical, Molecular, and Prognostic Significance of WHO Type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and Various Other 3q Abnormalities in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2010, 28, 3890-3898.	0.8	217
22	Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. The Hematology Journal, 2003, 4, 31-40.	2.0	198
23	Distinct gene expression profiles of acute myeloid/T-lymphoid leukemia with silenced CEBPA and mutations in NOTCH1. Blood, 2007, 110, 3706-3714.	0.6	180
24	MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome. Cancer Cell, 2016, 30, 43-58.	7.7	176
25	Essential role of Jun family transcription factors in PU.1 knockdown–induced leukemic stem cells. Nature Genetics, 2006, 38, 1269-1277.	9.4	167
26	Identification of a 24-Gene Prognostic Signature That Improves the European LeukemiaNet Risk Classification of Acute Myeloid Leukemia: An International Collaborative Study. Journal of Clinical Oncology, 2013, 31, 1172-1181.	0.8	164
27	Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. Nature Medicine, 2012, 18, 1118-1122.	15.2	162
28	Sequential gain of mutations in severe congenital neutropenia progressing to acute myeloid leukemia. Blood, 2012, 119, 5071-5077.	0.6	156
29	Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica, 2012, 97, 388-392.	1.7	143
30	miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nature Communications, 2012, 3, 688.	5.8	138
31	Molecular characterization of mutant <i>TP53</i> acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood, 2022, 139, 2347-2354.	0.6	131
32	CD34+CD38â^' leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia, 2019, 33, 1102-1112.	3.3	130
33	Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Science Translational Medicine, 2020, 12, .	5 . 8	117
34	Sox4 Is a Key Oncogenic Target in C/EBPα Mutant Acute Myeloid Leukemia. Cancer Cell, 2013, 24, 575-588.	7.7	112
35	Risk stratification of intermediate-risk acute myeloid leukemia: integrative analysis of a multitude of gene mutation and gene expression markers. Blood, 2011, 118, 1069-1076.	0.6	109
36	Epigenetic Identity in AML Depends on Disruption of Nonpromoter Regulatory Elements and Is Affected by Antagonistic Effects of Mutations in Epigenetic Modifiers. Cancer Discovery, 2017, 7, 868-883.	7.7	101

#	Article	IF	CITATIONS
37	Gene Expression Profiling in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2005, 23, 6296-6305.	0.8	99
38	Genomic landscape and clonal evolution of acute myeloid leukemia with t(8;21): an international study on 331 patients. Blood, 2019, 133, 1140-1151.	0.6	96
39	Deregulated Expression of <i>EVI1</i> Defines a Poor Prognostic Subset of <i>MLL</i> Rearranged Acute Myeloid Leukemias: A Study of the German-Austrian Acute Myeloid Leukemia Study Group and the Dutch-Belgian-Swiss HOVON/SAKK Cooperative Group. Journal of Clinical Oncology, 2013, 31, 95-103.	0.8	95
40	Aberrant DNA hypermethylation signature in acute myeloid leukemia directed by EVI1. Blood, 2011, 117, 234-241.	0.6	94
41	Age-Specific Differences in Oncogenic Pathway Dysregulation in Patients With Acute Myeloid Leukemia. Journal of Clinical Oncology, 2009, 27, 5580-5586.	0.8	90
42	MBD4 guards against methylation damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML. Blood, 2018, 132, 1526-1534.	0.6	90
43	Mutational spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of RAS/RTK signaling pathways. Blood, 2015, 125, 133-139.	0.6	86
44	TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Advances, 2020, 4, 5011-5024.	2.5	85
45	High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia. Blood, 2010, 116, 1747-1754.	0.6	84
46	Genome-wide epigenetic analysis delineates a biologically distinct immature acute leukemia with myeloid/T-lymphoid features. Blood, 2009, 113, 2795-2804.	0.6	83
47	Expression profiling of adult acute lymphoblastic leukemia identifies a BCR-ABL1-like subgroup characterized by high non-response and relapse rates. Haematologica, 2015, 100, e261-e264.	1.7	82
48	<i>CEBPA</i> mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome. Blood, 2022, 139, 87-103.	0.6	82
49	Therapeutic value of clofarabine in younger and middle-aged (18-65 years) adults with newly diagnosed AML. Blood, 2017, 129, 1636-1645.	0.6	77
50	Characterization of CEBPA mutations and promoter hypermethylation in pediatric acute myeloid leukemia. Haematologica, 2011, 96, 384-392.	1.7	74
51	AML1-ETO fusion protein up-regulates TRKA mRNA expression in human CD34+ cells, allowing nerve growth factor-induced expansion. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4016-4021.	3.3	71
52	Review: Aberrant <i><scp>EVI</scp>1</i> expression in acute myeloid leukaemia. British Journal of Haematology, 2016, 172, 870-878.	1.2	60
53	Common and Overlapping Oncogenic Pathways Contribute to the Evolution of Acute Myeloid Leukemias. Cancer Research, 2011, 71, 4117-4129.	0.4	55
54	The evolving molecular genetic landscape in acute myeloid leukaemia. Current Opinion in Hematology, 2013, 20, 79-85.	1.2	53

#	Article	IF	CITATIONS
55	Two splice-factor mutant leukemia subgroups uncovered at the boundaries of MDS and AML using combined gene expression and DNA-methylation profiling. Blood, 2014, 123, 3327-3335.	0.6	52
56	Gene expression profiling of minimally differentiated acute myeloid leukemia: M0 is a distinct entity subdivided by RUNX1 mutation status. Blood, 2009, 114, 3001-3007.	0.6	51
57	C/EBP \hat{I}^3 deregulation results in differentiation arrest in acute myeloid leukemia. Journal of Clinical Investigation, 2012, 122, 4490-4504.	3.9	50
58	Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling. Blood, 2012, 120, 868-879.	0.6	47
59	<scp>CD</scp> 45 <scp>RA</scp> , a specific marker for leukaemia stem cell subâ€populations in acute myeloid leukaemia. British Journal of Haematology, 2016, 173, 219-235.	1.2	47
60	Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing. Leukemia, 2021, 35, 47-61.	3.3	47
61	A variant allele of Growth Factor Independence 1 (GFI1) is associated with acute myeloid leukemia. Blood, 2010, 115, 2462-2472.	0.6	46
62	Azacytidine Treatment for VEXAS Syndrome. HemaSphere, 2021, 5, e661.	1.2	45
63	Downregulation of the Wnt inhibitor CXXC5 predicts a better prognosis in acute myeloid leukemia. Blood, 2015, 125, 2985-2994.	0.6	42
64	AML at older age: age-related gene expression profiles reveal a paradoxical down-regulation of p16INK4A mRNA with prognostic significance. Blood, 2009, 114, 2869-2877.	0.6	41
65	Next-generation sequencing in the diagnosis and minimal residual disease assessment of acute myeloid leukemia. Haematologica, 2019, 104, 868-871.	1.7	40
66	Atypical $3q26/MECOM$ rearrangements genocopy inv(3)/t(3;3) in acute myeloid leukemia. Blood, 2020, 136, 224-234.	0.6	39
67	Systematic Profiling of <i>DNMT3A</i> Variants Reveals Protein Instability Mediated by the DCAF8 E3 Ubiquitin Ligase Adaptor. Cancer Discovery, 2022, 12, 220-235.	7.7	38
68	A recurrent in-frame insertion in a CEBPA transactivation domain is a polymorphism rather than a mutation that does not affect gene expression profiling–based clustering of AML. Blood, 2007, 109, 389-390.	0.6	36
69	The Antioxidant Protein Peroxiredoxin 4 Is Epigenetically Down Regulated in Acute Promyelocytic Leukemia. PLoS ONE, 2011, 6, e16340.	1.1	36
70	MPL expression on AML blasts predicts peripheral blood neutropenia and thrombocytopenia. Blood, 2016, 128, 2253-2257.	0.6	34
71	Gene expression profiling in acute myeloid leukemia. Current Opinion in Hematology, 2005, 12, 76-81.	1,2	33
72	Addition of lenalidomide to intensive treatment in younger and middle-aged adults with newly diagnosed AML: the HOVON-SAKK-132 trial. Blood Advances, 2021, 5, 1110-1121.	2.5	33

#	Article	IF	Citations
73	High BRE expression predicts favorable outcome in adult acute myeloid leukemia, in particular among MLL-AF9–positive patients. Blood, 2011, 118, 5613-5621.	0.6	32
74	Next-Generation Sequencing Analysis of the Human $TCR\hat{J}^3\hat{J}'+T$ -Cell Repertoire Reveals Shifts in $V\hat{J}^3$ - and $V\hat{J}'$ -Usage in Memory Populations upon Aging. Frontiers in Immunology, 2018, 9, 448.	2.2	31
75	Integrated genome-wide genotyping and gene expression profiling reveals BCL11B as a putative oncogene in acute myeloid leukemia with 14q32 aberrations. Haematologica, 2014, 99, 848-857.	1.7	30
76	The neuropeptide receptor calcitonin receptor-like (CALCRL) is a potential therapeutic target in acute myeloid leukemia. Leukemia, 2019, 33, 2830-2841.	3.3	30
77	miRâ€15aâ€5p and miRâ€21â€5p contribute to chemoresistance in cytogenetically normal acute myeloid leukaemia by targeting PDCD4, ARL2 and BTG2. Journal of Cellular and Molecular Medicine, 2021, 25, 575-585.	1.6	30
78	HeatMapper: powerful combined visualization of gene expression profile correlations, genotypes, phenotypes and sample characteristics. BMC Bioinformatics, 2006, 7, 337.	1.2	27
79	Significance of Murine Retroviral Mutagenesis for Identification of Disease Genes in Human Acute Myeloid Leukemia. Cancer Research, 2006, 66, 622-626.	0.4	26
80	NrasG12D oncoprotein inhibits apoptosis of preleukemic cells expressing Cbfl ² -SMMHC via activation of MEK/ERK axis. Blood, 2014, 124, 426-436.	0.6	26
81	Retroviral Integration Mutagenesis in Mice and Comparative Analysis in Human AML Identify Reduced PTP4A3 Expression as a Prognostic Indicator. PLoS ONE, 2011, 6, e26537.	1.1	24
82	Altered NFE2 activity predisposes to leukemic transformation and myelosarcoma with AML-specific aberrations. Blood, 2019, 133, 1766-1777.	0.6	23
83	The effect of oligonucleotide microarray data pre-processing on the analysis of patient-cohort studies. BMC Bioinformatics, 2006, 7, 105.	1.2	22
84	A somatic mutation of GFI1B identified in leukemia alters cell fate via a SPI1 (PU.1) centered genetic regulatory network. Developmental Biology, 2016, 411, 277-286.	0.9	20
85	Molecular Minimal Residual Disease Detection in Acute Myeloid Leukemia. Cancers, 2021, 13, 5431.	1.7	18
86	Genes Predictive of Outcome and Novel Molecular Classification Schemes in Adult Acute Myeloid Leukemia. Cancer Treatment and Research, 2009, 145, 67-83.	0.2	17
87	Digital PCR for <i>BCRâ€ABL1</i> Quantification in CML: Current Applications in Clinical Practice. HemaSphere, 2020, 4, e496.	1.2	17
88	A 4â€gene expression score associated with high levels of <i>Wilms Tumorâ€1 (<scp>WT</scp>1)</i> expression is an adverse prognostic factor in acute myeloid leukaemia. British Journal of Haematology, 2016, 172, 401-411.	1.2	14
89	The Landscape of <i>KMT2A</i> â€PTD AML: Concurrent Mutations, Gene Expression Signatures, and Clinical Outcome. HemaSphere, 2019, 3, e181.	1.2	14
90	Ibrutinib added to 10-day decitabine for older patients with AML and higher risk MDS. Blood Advances, 2020, 4, 4267-4277.	2.5	14

#	Article	IF	Citations
91	SNPExpress: integrated visualization of genome-wide genotypes, copy numbers and gene expression levels. BMC Genomics, 2008, 9, 41.	1.2	12
92	Pim2 cooperates with PML-RARÎ \pm to induce acute myeloid leukemia in a bone marrow transplantation model. Blood, 2010, 115, 4507-4516.	0.6	12
93	Sex disparity in acute myeloid leukaemia with <i>FLT3</i> internal tandem duplication mutations: implications for prognosis. Molecular Oncology, 2021, 15, 2285-2299.	2.1	11
94	Impact of hospital experience on the quality of tyrosine kinase inhibitor response monitoring and consequence for chronic myeloid leukemia patient survival. Haematologica, 2017, 102, e486-e489.	1.7	10
95	<i><scp>ID</scp>1</i> expression associates with other molecular markers and is not an independent prognostic factor in cytogenetically normal acute myeloid leukaemia. British Journal of Haematology, 2012, 158, 208-215.	1.2	9
96	Detection of CEBPADouble Mutants in Acute Myeloid Leukemia Using a Custom Gene Expression Array. Genetic Testing and Molecular Biomarkers, 2013, 17, 395-400.	0.3	8
97	Distinct Gene Expression Profiling in AML in Elderly Versus Younger Patients. Blood, 2008, 112, 2546-2546.	0.6	8
98	Reduced SLIT2 is Associated with Increased Cell Proliferation and Arsenic Trioxide Resistance in Acute Promyelocytic Leukemia. Cancers, 2020, 12, 3134.	1.7	7
99	Genomic and evolutionary portraits of disease relapse in acute myeloid leukemia. Leukemia, 2021, 35, 2688-2692.	3.3	7
100	Disruption of CSF-1R signaling inhibits growth of AML with inv(16). Blood Advances, 2021, 5, 1273-1277.	2.5	7
101	Omitting cytogenetic assessment from routine treatment response monitoring in chronic myeloid leukemia is safe. European Journal of Haematology, 2018, 100, 367-371.	1.1	6
102	RNA Targeting in Acute Myeloid Leukemia. ACS Pharmacology and Translational Science, 2020, 3, 1225-1232.	2.5	6
103	The Common Viral Insertion Site Evi12 Is Located in the 5′-Noncoding Region of Gnn, a Novel Gene with Enhanced Expression in Two Subclasses of Human Acute Myeloid Leukemia. Journal of Virology, 2005, 79, 5249-5258.	1.5	5
104	Detection of MutantNPM1mRNA in Acute Myeloid Leukemia Using Custom Gene Expression Arrays. Genetic Testing and Molecular Biomarkers, 2013, 17, 295-300.	0.3	5
105	FLT3â \in ITD mutations in acute myeloid leukaemia â \in " molecular characteristics, distribution and numerical variation. Molecular Oncology, 2021, 15, 2300-2317.	2.1	5
106	Durable Responses and Survival in High Risk AML and MDS Patients Treated with an Allogeneic Leukemia-Derived Dendritic Cell Vaccine. Blood, 2019, 134, 1381-1381.	0.6	5
107	RNA sequencing reveals a unique fusion of the lysine (K)-specific methyltransferase 2A and smooth muscle myosin heavy chain 11 in myelodysplastic syndrome and acute myeloid leukemia. Haematologica, 2015, 100 , $e1$ - $e3$ l.	1.7	4
108	Archived bone marrow smears are an excellent source for NGS-based mutation detection in acute myeloid leukemia. Leukemia, 2020, 34, 2220-2224.	3.3	4

#	Article	IF	Citations
109	Tribbles Homolog 2 (Trib2) Inactivates C/EBPalpha and Causes Acute Myelogenous Leukemia Blood, 2006, 108, 776-776.	0.6	4
110	CEBPÎ \pm Is a Transcriptional Repressor of T-Cell Related Genes Explaining the Myeloid/T-Lymphoid Features of CEBPÎ \pm -Silenced AML. Blood, 2011, 118, 554-554.	0.6	4
111	Lack of splice factor and cohesin complex mutations in pediatric myelodysplastic syndrome. Haematologica, 2016, 101, e479-e481.	1.7	3
112	Secondary CNL after SAA reveals insights in leukemic transformation of bone marrow failure syndromes. Blood Advances, 2020, 4, 5540-5546.	2. 5	3
113	PPM1D mutations appear in complete remission after exposure to chemotherapy without predicting emerging AML relapse. Leukemia, 2021, 35, 2693-2697.	3.3	2
114	Immune Landscapes Predict Chemotherapy Resistance and Anti-Leukemic Activity of Flotetuzumab, an Investigational CD123×CD3 Bispecific Dart® Molecule, in Patients with Relapsed/Refractory Acute Myeloid Leukemia. Blood, 2019, 134, 460-460.	0.6	2
115	Genetic vs. Epigenetic Disruption of the CEBPA Locus Yields Epigenomically and Biologically Distinct Leukemia Phenotypes Blood, 2007, 110, 2117-2117.	0.6	1
116	Mutant Wilms' Tumor 1 (WT1) mRNA with Premature Termination Codons Is Sensitive to Nonsense-Mediated RNA Decay in Acute Myeloid Leukemia (AML). Blood, 2008, 112, 2538-2538.	0.6	1
117	Preliminary Results From a Phase III Trial of Imatinib Versus Imatinib in Combination with Cytarabine in Patients with First Chronic Phase Myeloid Leukemia. Blood, 2011, 118, 2758-2758.	0.6	1
118	Myeloproliferative Disease in the Pathogenesis and Survival of Budd-Chiari Syndrome Blood, 2006, 108, 1480-1480.	0.6	1
119	High EVI1 Expression Predicts Outcome in Younger Adult (15 to 60 years) Patients with Acute Myeloid Leukemia and Is Associated with Distinctive Cytogenetic Subgroups Blood, 2009, 114, 582-582.	0.6	1
120	VEGFC Predicts Poor Outcome in Pediatric as Well as Adult Acute Myeloid Leukemia: Insights in Associated Gene Expression Profiles Blood, 2009, 114, 997-997.	0.6	1
121	Harmonized Testing for BCR-ABL Kinase Domain Mutations In CML: Results of a Survey and First Control Round within 28 National Reference Laboratories In Europe. Blood, 2010, 116, 894-894.	0.6	1
122	The Impact of Novel Molecular Markers on Risk Stratification in Acute Myeloid Leukemia. Blood, 2012, 120, SCI-33-SCI-33.	0.6	1
123	A Leukemic Progression Model of Severe Congenital Neutropenia Uncovers a Novel Mechanism of AML Development Involving Elevated Inflammatory Responses, Mutation of CXXC4 and Decreased TET2 Levels. Blood, 2018, 132, 540-540.	0.6	1
124	Transplant in older adults with AML: genomic wheat and chaff. Blood, 2022, 139, 3459-3461.	0.6	1
125	The application of an integrated clinical, cytogenetic, and molecular risk stratification for acute myeloid leukemia patients using a central laboratory in a Brazilian multicentric study. Blood Advances, 2017, 1, 86-89.	2.5	0
126	Future Developments: Measurable Residual Disease. Hematologic Malignancies, 2021, , 317-337.	0.2	0

#	Article	IF	CITATIONS
127	Gene Expression Profiles with Signatures of Tumor Biology and Chemotherapy Sensitivity May Provide a Novel Approach to Maximize Response to Induction Therapy in Patients with Acute Myeloid Leukemia Blood, 2008, 112, 2252-2252.	0.6	O
128	Polymorphisms in the Multidrug Resistance Gene MDR1 (ABCB1) Predict for Molecular Resistance in Patients with Newly Diagnosed Chronic Myeloid Leukemia (CML) Receiving High-Dose Imatinib Blood, 2009, 114, 2208-2208.	0.6	0
129	DNA Methylation Profiling Predicts Clinical Outcomes and Reveals Unique Insights Into the Molecular Complexity of Acute Myeloid Leukemia Blood, 2009, 114, 707-707.	0.6	O
130	Methylated Retroviral Integration Mutagenesis (MRIM) in Mice and Comparative Analysis in Human AML Identify Reduced PTP4A3 Expression As a Prognostic Indicator. Blood, 2011, 118, 746-746.	0.6	0
131	A Single Microarray Assay for Simultaneous Diagnosis of $t(15;17)$, $t(8;21)$, $Inv(16)/t(16;16)$, NPM1 Type A/B/D Mutation, CEBPA Double Mutation, and Aberrant Expression of BAALC or EVI1 in AML/APL Patients. Blood, 2011, 118, 4876-4876.	0.6	0
132	Linking the Glycolytic Enzyme HK3 to Neutrophil Differentiation of APL Cells Via PU.1. Blood, 2011, 118, 2425-2425.	0.6	0
133	Activation of a Mir-181-Targeting HOXA-PBX3 Homeobox Gene Signature Is Associated with Adverse Prognosis of Cytogenetically Abnormal Acute Myeloid Leukemia. Blood, 2011, 118, 236-236.	0.6	0
134	The HOXA/PBX3 Pathway Is an Attractive Therapeutic Target in MLL-Rearranged Acute Leukemia. Blood, 2012, 120, 3522-3522.	0.6	0
135	Identification of Sox4 As Key Oncogene in Leukemias with Mutated or Silenced C/EBPα. Blood, 2012, 120, 114-114.	0.6	0
136	BAALC and EVI1 Prognostic Gene Expression in Adult Acute Myeloid Leukemia Using the Amlprofiler Custom Microarray. Blood, 2012, 120, 1420-1420.	0.6	0
137	Prognostic and Functional Relevance of Aberrant Microrna-9/9* Expression in Acute Myeloid Leukemia Blood, 2012, 120, 2542-2542.	0.6	0
138	Genome-Wide Gene Expression Profiling, Genotyping, and Copy Number Analyses of Acute Myeloid Leukemia Using Affymetrix GeneChips. Methods in Molecular Biology, 2013, 1015, 155-177.	0.4	0
139	Molecular Minimal Residual Disease Detection in Acute Myeloid Leukemia. Blood, 2016, 128, SCI-30-SCI-30.	0.6	0
140	Whole Transcriptome RNA Sequencing As a Comprehensive Diagnostic Tool for Acute Myeloid Leukemia. Blood, 2018, 132, 2762-2762.	0.6	0
141	Complex 3q26/EVI1 Rearrangements Genocopy Inv(3)/t(3;3) Acute Myeloid Leukemias By Enhancer Hijacking, EVI1 Overexpression, Absent MDS1-EVI1 and Low GATA2 Expression. Blood, 2018, 132, 2766-2766.	0.6	0
142	Slit-Robo Pathway Is Clinically Relevant and May Represent a Potential Target in Acute Promyelocytic Leukemia. Blood, 2018, 132, 1533-1533.	0.6	0
143	Metformintreatment Overcomes ATRA-Resistance in Acute Promyelocytic Leukemia and Increases FOXO3A Expression. Blood, 2018, 132, 1532-1532.	0.6	0
144	Clinical and Functional Studies Reveal That TP73 Isoforms Levels Are Associated with Prognosis and RA-Resistance in Acute Promyelocytic Leukemia. Blood, 2019, 134, 2719-2719.	0.6	0

PETER J M VALK

#	Article	IF	CITATIONS
145	Clonal Evolution of Multiple Myeloma in Patients from Diagnosis to First Relapse, Who Were Treated in Subsequent Clinical Trials. Blood, 2019, 134, 1798-1798.	0.6	O
146	Allele-Specific Expression of GATA2 in AML with CEBPA Biallelic Mutations. Blood, 2019, 134, 1235-1235.	0.6	0
147	Arsenic Trioxide Abrogate MN1 Mediated RA-Resistance in Acute Promyelocytic Leukemia. Blood, 2019, 134, 5166-5166.	0.6	O