Shinya Mine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9602796/publications.pdf

Version: 2024-02-01

		687220	501076
30	980	13	28
papers	citations	h-index	g-index
30	30	30	892
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Designing 3Dâ€MoS ₂ Sponge as Excellent Cocatalysts in Advanced Oxidation Processes for Pollutant Control. Angewandte Chemie - International Edition, 2020, 59, 13968-13976.	7.2	316
2	Defects on CoS _{2â^'<i>x</i>} : Tuning Redox Reactions for Sustainable Degradation of Organic Pollutants. Angewandte Chemie - International Edition, 2021, 60, 2903-2908.	7.2	161
3	Nonâ€oxidative Coupling of Methane: Nâ€type Doping of Niobium Single Atoms in TiO ₂ –SiO ₂ Induces Electron Localization. Angewandte Chemie - International Edition, 2021, 60, 11901-11909.	7.2	77
4	Single-Atom High-Valent Fe(IV) for Promoted Photocatalytic Nitrogen Hydrogenation on Porous TiO _{-SiO₂. ACS Catalysis, 2021, 11, 4362-4371.}	5.5	70
5	Designing 3Dâ€MoS ₂ Sponge as Excellent Cocatalysts in Advanced Oxidation Processes for Pollutant Control. Angewandte Chemie, 2020, 132, 14072-14080.	1.6	52
6	Formation of Highly Active Superoxide Sites on CuO Nanoclusters Encapsulated in SAPO-34 for Catalytic Selective Ammonia Oxidation. ACS Catalysis, 2019, 9, 10398-10408.	5.5	39
7	Defects on CoS _{2â^3<i>x</i>} : Tuning Redox Reactions for Sustainable Degradation of Organic Pollutants. Angewandte Chemie, 2021, 133, 2939-2944.	1.6	36
8	Analysis of Updated Literature Data up to 2019 on the Oxidative Coupling of Methane Using an Extrapolative Machine‣earning Method to Identify Novel Catalysts. ChemCatChem, 2021, 13, 3636-3655.	1.8	33
9	Efficient photocatalytic degradation of organics present in gas and liquid phases using Pt-TiO2/Zeolite (H-ZSM). Chemosphere, 2016, 153, 237-243.	4.2	27
10	Linker defect engineering for effective reactive site formation in metal–organic framework photocatalysts with a MIL-125(Ti) architecture. Journal of Catalysis, 2020, 392, 119-125.	3.1	27
11	Reverse water-gas shift reaction over Pt/MoO _x /TiO ₂ : reverse Mars–van Krevelen mechanism <i>via</i> redox of supported MoO _x . Catalysis Science and Technology, 2021, 11, 4172-4180.	2.1	20
12	Crafting carbon sphere-titania core–shell interfacial structure to achieve enhanced visible light photocatalysis. Applied Surface Science, 2020, 534, 147566.	3.1	16
13	Redox-Driven Reversible Structural Evolution of Isolated Silver Atoms Anchored to Specific Sites on \hat{I}^3 -Al ₂ O ₃ . ACS Catalysis, 2022, 12, 544-559.	5.5	16
14	Nonâ€oxidative Coupling of Methane: Nâ€type Doping of Niobium Single Atoms in TiO ₂ â€'SiO ₂ Induces Electron Localization. Angewandte Chemie, 2021, 133, 12008-12016.	1.6	13
15	Factors determining surface oxygen vacancy formation energy in ternary spinel structure oxides with zinc. Physical Chemistry Chemical Physics, 2021, 23, 23768-23777.	1.3	12
16	Surface activation by electron scavenger metal nanorod adsorption on TiH ₂ , TiC, TiN, and Ti ₂ O ₃ . Physical Chemistry Chemical Physics, 2021, 23, 16577-16593.	1.3	9
17	Charged domain boundaries stabilized by translational symmetry breaking in the hybrid improper ferroelectric Ca3–xSrxTi2O7. Communications Materials, 2021, 2, .	2.9	8
18	Synthesis of Zeolitic Ti, Zr-Substituted Vanadotungstates and Investigation of Their Catalytic Activities for Low Temperature NH ₃ -SCR. ACS Catalysis, 2021, 11, 14016-14025.	5.5	7

#	Article	IF	CITATIONS
19	Machine Learning Analysis of Literature Data on the Water Gas Shift Reaction toward Extrapolative Prediction of Novel Catalysts. Chemistry Letters, 2022, 51, 269-273.	0.7	7
20	Preparation of tantalum oxynitride thin film photocatalysts by reactive magnetron sputtering deposition under high substrate temperature. Research on Chemical Intermediates, 2017, 43, 5123-5136.	1.3	6
21	Malachite Green Derivatives for Dye-Sensitized Solar Cells: Optoelectronic Characterizations and Persistence on TiO2. Bulletin of the Chemical Society of Japan, 2018, 91, 52-64.	2.0	6
22	Experimental and Theoretical Investigation of Metal–Support Interactions in Metal-Oxide-Supported Rhenium Materials. Journal of Physical Chemistry C, 2022, 126, 4472-4482.	1.5	5
23	Design of Fe-MOF-bpdc deposited with cobalt oxide (CoOx) nanoparticles for enhanced visible-light-promoted water oxidation reaction. Research on Chemical Intermediates, 2020, 46, 2003-2015.	1.3	4
24	Role of Ba in an Al ₂ O ₃ â€Supported Pdâ€based Catalyst under Practical Threeâ€Way Catalysis Conditions. ChemCatChem, 2022, 14, .	1.8	4
25	Deep Blue Asymmetrical Streptocyanine Dyes: Synthesis, Spectroscopic Characterizations, and Ion-Specific Cooperative Adsorption at the Surface of TiO ₂ Anatase Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 15049-15062.	1.5	3
26	Understanding and controlling the formation of surface anion vacancies for catalytic applications. Catalysis Science and Technology, 2022, 12, 2398-2410.	2.1	2
27	Trends in Surface Oxygen Formation Energy in Perovskite Oxides. ACS Omega, 2022, 7, 18427-18433.	1.6	2
28	The design and development of MOF photocatalysts and their applications for water-splitting reaction. , 2020, , 323-338.		1
29	Stabilization of layered perovskite structures via strontium substitution in Ca3Ti2O7 revealed via elemental mapping. Journal of Applied Physics, 2022, 131, 024102.	1.1	1
30	Synthesis of Porous Silica by Using Denatured Collagen as a Template. Zairyo/Journal of the Society of Materials Science, Japan, 2018, 67, 598-602.	0.1	0