
Xinhua Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9602612/publications.pdf Version: 2024-02-01

Χινιμιία Παι

#	Article	IF	CITATIONS
1	Local conjugation of auxin by the GH3 amido synthetases is required for normal development of roots and flowers in Arabidopsis. Biochemical and Biophysical Research Communications, 2022, 589, 16-22.	2.1	13
2	Two homologous INDOLE-3-ACETAMIDE (IAM) HYDROLASE genes are required for the auxin effects of IAM in Arabidopsis. Journal of Genetics and Genomics, 2020, 47, 157-165.	3.9	22
3	Role of ArabidopsisÂINDOLE-3-ACETIC ACID CARBOXYL METHYLTRANSFERASE 1Âin auxin metabolism. Biochemical and Biophysical Research Communications, 2020, 527, 1033-1038.	2.1	12
4	UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis. Biochemical and Biophysical Research Communications, 2020, 532, 244-250.	2.1	21
5	An Essential Role for miRNA167 in Maternal Control of Embryonic and Seed Development. Plant Physiology, 2019, 180, 453-464.	4.8	61
6	Modulation of Auxin Signaling and Development by Polyadenylation Machinery. Plant Physiology, 2019, 179, 686-699.	4.8	15
7	Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PLoS Genetics, 2018, 14, e1007397.	3.5	63
8	On Improving CRISPR for Editing Plant Genes: Ribozyme-Mediated Guide RNA Production and Fluorescence-Based Technology for Isolating Transgene-Free Mutants Generated by CRISPR. Progress in Molecular Biology and Translational Science, 2017, 149, 151-166.	1.7	25
9	An Effective Strategy for Reliably Isolating Heritable and <i>Cas9</i> -Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing. Plant Physiology, 2016, 171, 1794-1800.	4.8	225
10	Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene. Nature Plants, 2015, 1, .	9.3	33
11	Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants. Plant and Cell Physiology, 2015, 56, 1641-1654.	3.1	142
12	Auxin Overproduction in Shoots Cannot Rescue Auxin Deficiencies in Arabidopsis Roots. Plant and Cell Physiology, 2014, 55, 1072-1079.	3.1	202
13	The Biochemical Mechanism of Auxin Biosynthesis by an Arabidopsis YUCCA Flavin-containing Monooxygenase. Journal of Biological Chemistry, 2013, 288, 1448-1457.	3.4	175
14	<i>NPY</i> genes and AGC kinases define two key steps in auxin-mediated organogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 21017-21022.	7.1	139
15	NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18825-18829.	7.1	125
16	Genetic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3129-3134.	7.1	81