
Jonghee Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9602278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells. Journal of Applied Physics, 2013, 113, .	2.5	147
2	Achieving High Efficiency and Improved Stability in ITOâ€Free Transparent Organic Lightâ€Emitting Diodes with Conductive Polymer Electrodes. Advanced Functional Materials, 2013, 23, 3763-3769.	14.9	123
3	We Want Our Photons Back: Simple Nanostructures for White Organic Lightâ€Emitting Diode Outcoupling. Advanced Functional Materials, 2014, 24, 2553-2559.	14.9	67
4	Rising advancements in the application of PEDOT:PSS as a prosperous transparent and flexible electrode material for solution-processed organic electronics. Journal of Information Display, 2020, 21, 71-91.	4.0	46
5	A randomly nano-structured scattering layer for transparent organic light emitting diodes. Nanoscale, 2014, 6, 10727-10733.	5.6	37
6	Influence of organic capping layers on the performance of transparent organic light-emitting diodes. Optics Letters, 2011, 36, 1443.	3.3	31
7	Transparent Organic Lightâ€Emitting Diodes: Advances, Prospects, and Challenges. Advanced Optical Materials, 2021, 9, 2002040.	7.3	30
8	Efficient ITO-free organic light-emitting diodes comprising PEDOT:PSS transparent electrodes optimized with 2-ethoxyethanol and post treatment. Organic Electronics, 2017, 42, 348-354.	2.6	29
9	Systematic investigation of transparent organic light-emitting diodes depending on top metal electrode thickness. Organic Electronics, 2011, 12, 1383-1388.	2.6	26
10	Enhancement of out-coupling efficiency of flexible organic light-emitting diodes fabricated on an MLA-patterned parylene substrate. Organic Electronics, 2019, 71, 246-250.	2.6	25
11	White transparent organic light-emitting diodes with high top and bottom color rendering indices. Journal of Information Display, 2015, 16, 161-168.	4.0	24
12	Highly Conductive PEDOT:PSS Films with 1,3â€Dimethylâ€2â€Imidazolidinone as Transparent Electrodes for Organic Lightâ€Emitting Diodes. Macromolecular Rapid Communications, 2016, 37, 1427-1433.	3.9	24
13	Highly twisted pyrene derivatives for non-doped blue OLEDs. Dyes and Pigments, 2016, 128, 19-25.	3.7	24
14	Enhanced electrical properties of PEDOT:PSS films using solvent treatment and its application to ITO-free organic light-emitting diodes. Journal of Luminescence, 2017, 187, 221-226.	3.1	23
15	Enhanced outcoupling in down-conversion white organic light-emitting diodes using imprinted microlens array films with breath figure patterns. Science and Technology of Advanced Materials, 2019, 20, 35-41.	6.1	23
16	Color-tunable organic light-emitting diodes with vertically stacked blue, green, and red colors for lighting and display applications. Optics Express, 2018, 26, 18351.	3.4	21
17	4,4′,4″-Tris(N-carbazolyl)-triphenylamine interlayer in highly efficient phosphorescent organic light emitting diodes based on tris[4-methyl-2-2(4′-trimethylsilylphenyl)pyridine]iridium complex. Thin Solid Films, 2011, 519, 6073-6076.	1.8	20
18	Importance of Purcell factor for optimizing structure of organic light-emitting diodes. Optics Express, 2019, 27, 11057.	3.4	20

Jonghee Lee

#	Article	IF	CITATIONS
19	Color temperature tuning of white organic light-emitting diodes via spatial control of micro-cavity effects based on thin metal strips. Organic Electronics, 2015, 26, 334-339.	2.6	19
20	Highly efficient bi-directional organic light-emitting diodes by strong micro-cavity effects. Applied Physics Letters, 2011, 99, 073303.	3.3	18
21	Luminescence enhancement of OLED lighting panels using a microlens array film. Journal of Information Display, 2018, 19, 179-184.	4.0	18
22	Multifunctional Stretchable Organic–Inorganic Hybrid Electronics with Transparent Conductive Silver Nanowire/Biopolymer Hybrid Films. Advanced Optical Materials, 2021, 9, 2002041.	7.3	18
23	Biâ€directional organic lightâ€emitting diodes with nanoparticleâ€enhanced light outcoupling. Laser and Photonics Reviews, 2013, 7, 1079-1087.	8.7	17
24	Optical Analysis of Power Distribution in Top-Emitting Organic Light Emitting Diodes Integrated with Nanolens Array Using Finite Difference Time Domain. ACS Applied Materials & Interfaces, 2018, 10, 18942-18947.	8.0	17
25	Organic/metal hybrid cathode for transparent organic light-emitting diodes. Organic Electronics, 2013, 14, 2039-2045.	2.6	16
26	Highly efficient solution-processed blue organic light-emitting diodes based on thermally activated delayed fluorescence emitters with spiroacridine donor. Journal of Industrial and Engineering Chemistry, 2019, 78, 265-270.	5.8	14
27	Towards highly efficient and highly transparent OLEDs: advanced considerations for emission zone coupled with capping layer design. Optics Express, 2015, 23, 27306.	3.4	13
28	High performance ITO-free white organic light-emitting diodes using highly conductive PEDOT:PSS transparent electrodes. Synthetic Metals, 2018, 242, 99-102.	3.9	13
29	Increased and balanced light emission of transparent organic light-emitting diodes by enhanced microcavity effects. Optics Letters, 2011, 36, 2931.	3.3	12
30	Conductivity Enhancement of Nickel Oxide by Copper Cation Codoping for Hybrid Organic-Inorganic Light-Emitting Diodes. ACS Photonics, 2018, 5, 3389-3398.	6.6	12
31	Highly Efficient Phosphorescent Organic Light Emitting Diodes Based on Iridium(III) Complex with Bulky Substituent Spacers. Journal of Nanoscience and Nanotechnology, 2012, 12, 4375-4378.	0.9	11
32	Controlling the optical efficiency of the transparent organic light-emitting diode using capping layers. Journal of Information Display, 2013, 14, 57-60.	4.0	11
33	Colored semi-transparent organic light-emitting diodes. Journal of Information Display, 2014, 15, 177-184.	4.0	11
34	ITO/metal/ITO anode for efficient transparent white organic light-emitting diodes. Japanese Journal of Applied Physics, 2015, 54, 02BC04.	1.5	11
35	Enhanced and balanced efficiency of white bi-directional organic light-emitting diodes. Optics Express, 2013, 21, 28040.	3.4	10
36	Transparent organic light-emitting diodes with different bi-directional emission colors using colors colors using	3.1	9

JONGHEE LEE

#	Article	IF	CITATIONS
37	Highly efficient white transparent organic light emitting diodes with nano-structured substrate. Organic Electronics, 2016, 29, 72-78.	2.6	9
38	Effect of a <i>P</i> -doped hole transport and charge generation layer on single and two-tandem blue top-emitting organic light-emitting diodes. Journal of Information Display, 2021, 22, 107-113.	4.0	7
39	Dye-doped poly(3,4-Ethylenedioxythiophene)-Poly(Styrenesulfonate) electrodes for the application in organic light-emitting diodes. Thin Solid Films, 2020, 707, 138078.	1.8	6
40	Enhanced Light Outcoupling in Organic Light-Emitting Diodes Using Phase Separated Polymer Films. Electronic Materials Letters, 2020, 16, 363-368.	2.2	6
41	Ancillary ligand effect with methyl and t-butyl for deep blue and high EQE blue phosphorescent organic light-emitting diodes. Chemical Engineering Journal, 2021, 411, 128437.	12.7	6
42	Efficient tandem organic light-emitting diode with fluorinated hexaazatrinaphthylene charge generation layer. Journal of Information Display, 2022, 23, 259-266.	4.0	6
43	Multiple functionalities of highly conductive and flexible photo- and thermal-responsive colorimetric cellulose films. Materials Research Letters, 2022, 10, 36-44.	8.7	5
44	Highly stretchable and robust transparent conductive polymer composites for multifunctional healthcare monitoring. Science and Technology of Advanced Materials, 2022, 23, 332-340.	6.1	5
45	Combined effects of microcavity and dielectric capping layer on bidirectional organic light-emitting diodes. Optics Letters, 2012, 37, 2007.	3.3	4
46	Highly efficient orange phosphorescent organic light-emitting diodes with (4-(3,5-dimethylphenyl)-2-(m-tolyl)pyridine)-based iridium complex. Dyes and Pigments, 2021, 186, 109006.	3.7	4
47	Solution-processed colored electrodes for ITO-free blue phosphorescent organic light-emitting diodes. Journal of Information Display, 2021, 22, 21-30.	4.0	4
48	Non-linear relation between emissive dipole orientation and forward luminous efficiency of top-emitting organic light-emitting diodes. Organic Electronics, 2018, 62, 72-76.	2.6	3
49	Transparent bi-directional organic light-emitting diodes with color-tunable top emission. Organic Electronics, 2020, 86, 105900.	2.6	3
50	Effect of the Hole Injection Layer Conductivity on the Performance of Polymer Light-Emitting Diodes. Electronic Materials Letters, 2021, 17, 331-339.	2.2	3
51	Perhydropolysilazane Chargeâ€Trap Layer in Solutionâ€Processed Organic and Oxide Memory Thinâ€Film Transistors. Advanced Electronic Materials, 2022, 8, .	5.1	3
52	Emission characteristics of transparent organic light-emitting diodes with molybdenum oxide capping layers. Synthetic Metals, 2020, 262, 116335.	3.9	2
53	Improved out-coupling efficiency of organic light-emitting diodes using micro-sized perovskite crystalline template. Organic Electronics, 2022, 108, 106580.	2.6	2
54	Solution-processed sky-blue phosphorescent organic light-emitting diodes based on 2-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene-8-yl)-4-(trimethylsilyl)pyridine chelated iridium complex. Journal of Information Display, 2022, 23, 273-279.	4.0	1

#	Article	IF	CITATIONS
55	Light Outcoupling Using Oxide Nanostructures for Tandem White Organic Light-Emitting Diodes on Polymeric Anodes. Electronic Materials Letters, 0, , 1.	2.2	Ο