Toyohiro Naito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9602054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecularly Imprinted Polymers for Selective Adsorption of Lysozyme and Cytochrome <i>c</i> Using a PEG-Based Hydrogel: Selective Recognition for Different Conformations Due to pH Conditions. Macromolecules, 2015, 48, 4081-4087.	4.8	49
2	Effective determination of a pharmaceutical, sulpiride, in river water by online SPE-LC–MS using a molecularly imprinted polymer as a preconcentration medium. Journal of Pharmaceutical and Biomedical Analysis, 2014, 89, 111-117.	2.8	33
3	Magnetic Field Stimuli-Sensitive Drug Release Using a Magnetic Thermal Seed Coated with Thermal-Responsive Molecularly Imprinted Polymer. ACS Biomaterials Science and Engineering, 2019, 5, 759-767.	5.2	33
4	Development of a C60-fullerene bonded open-tubular capillary using a photo/thermal active agent for liquid chromatographic separations by π–π interactions. Journal of Chromatography A, 2014, 1323, 174-178.	3.7	27
5	Identification and characterization of a thermally cleaved fragment of monoclonal antibody-A detected by sodium dodecyl sulfate-capillary gel electrophoresis. Journal of Pharmaceutical and Biomedical Analysis, 2017, 140, 98-104.	2.8	20
6	Efficient extraction of estrogen receptor–active compounds from environmental surface water via a receptor-mimic adsorbent, a hydrophilic PEG-based molecularly imprinted polymer. Chemosphere, 2019, 217, 204-212.	8.2	19
7	Unique Separation Behavior of a C ₆₀ Fullereneâ€Bonded Silica Monolith Prepared by an Effective Thermal Coupling Agent. Chemistry - A European Journal, 2015, 21, 18095-18098.	3.3	18
8	New platform for simple and rapid protein-based affinity reactions. Scientific Reports, 2017, 7, 178.	3.3	18
9	Isotope Effects on Hydrogen Bonding and CH/CDâ~Ï€ Interaction. Journal of Physical Chemistry C, 2018, 122, 15026-15032.	3.1	18
10	Engineering Nanowire-Mediated Cell Lysis for Microbial Cell Identification. ACS Nano, 2019, 13, 2262-2273.	14.6	17
11	Differentiating π Interactions by Constructing Concave/Convex Surfaces Using a Bucky Bowl Molecule, Corannulene in Liquid Chromatography. Analytical Chemistry, 2019, 91, 2439-2446.	6.5	17
12	Separation of halogenated benzenes enabled by investigation of halogen–π interactions with carbon materials. Chemical Science, 2020, 11, 409-418.	7.4	17
13	Selective adsorption of carbohydrates and glycoproteins via molecularly imprinted hydrogels: application to visible detection by a boronic acid monomer. Chemical Communications, 2017, 53, 7290-7293.	4.1	16
14	Tunable separations based on a molecular size effect for biomolecules by poly(ethylene glycol) gel-based capillary electrophoresis. Journal of Chromatography A, 2017, 1523, 107-113.	3.7	13
15	C ₆₀ -Fullerene Bonded Silica Monolithic Capillary for Specific Separations of Aromatic Compounds. Chromatography, 2015, 36, 105-113.	1.7	12
16	Development of a C ₇₀ -Fullerene Bonded Silica-Monolithic Capillary and Its Retention Characteristics in Liquid Chromatography. Chromatography, 2017, 38, 45-51.	1.7	12
17	Validation of Capillary Zone Electrophoretic Method for Evaluating Monoclonal Antibodies and Antibody-Drug Conjugates. Chromatography, 2016, 37, 117-124.	1.7	11
18	Three-Dimensional Fabrication for Microfluidics by Conventional Techniques and Equipment Used in Mass Production. Micromachines, 2016, 7, 82.	2.9	11

Τογομικό Ναιτό

#	Article	IF	CITATIONS
19	Specific Intermolecular Interactions by the Localized ï€â€Electrons in C ₇₀ â€fullerene. ChemistrySelect, 2016, 1, 5900-5904.	1.5	11
20	Tunable Liquid Chromatographic Separation of H/D Isotopologues Enabled by Aromatic π Interactions. Analytical Chemistry, 2020, 92, 4065-4072.	6.5	10
21	Label-Free Cancer Stem-like Cell Assay Conducted at a Single Cell Level Using Microfluidic Mechanotyping Devices. Analytical Chemistry, 2021, 93, 14409-14416.	6.5	10
22	Separation of saccharides using fullerene-bonded silica monolithic columns via π interactions in liquid chromatography. Scientific Reports, 2020, 10, 13850.	3.3	8
23	Simple and Effective Label-Free Capillary Electrophoretic Analysis of Sugars by Complexation Using Quinoline Boronic Acids. Analytical Chemistry, 2015, 87, 5068-5073.	6.5	7
24	Competitive ELISA-like Label-free Detection of Lysozyme by Using a Fluorescent Monomer-doped Molecularly Imprinted Hydrogel. Analytical Sciences, 2017, 33, 1311-1315.	1.6	7
25	Development of Microfluidic Components for Micro Total Analysis Systems. Chromatography, 2020, 41, 31-37.	1.7	6
26	Poly(ethylene glycol) Hydrogels with a Boronic Acid Monomer via Molecular Imprinting for Selective Removal of Quinic Acid Gamma-Lactone in Coffee. ACS Applied Polymer Materials, 2021, 3, 226-232.	4.4	6
27	Controllable Molecular Sieving by <i>copoly</i> (Poly(ethylene glycol) Acrylate/Poly(ethylene glycol)) Tj ETQq1 Materials, 2020, 2, 3886-3893.	1 0.78431 4.4	4 rgBT /Over 6
28	Tunable Molecular Sieving in Gel Electrophoresis Using a Poly(ethylene glycol)-Based Hydrogel. Chromatography, 2014, 35, 81-86.	1.7	5
29	Suppression of Hydrophobicity and Optimizations of a Ligand-Immobilization for Effective Affinity Chromatography Using a Spongy Monolith. Chromatography, 2018, 39, 113-118.	1.7	4
30	Fluorescent detection of target proteins via a molecularly imprinted hydrogel. Analytical Methods, 2021, 13, 3086-3091.	2.7	4
31	Quantitative Evaluation of Dielectric Breakdown of Silicon Micro- and Nanofluidic Devices for Electrophoretic Transport of a Single DNA Molecule. Micromachines, 2018, 9, 180.	2.9	3
32	Detection of Molecular Adsorbate in Aqueous Solution Based on Electroosmosis. Sensors and Materials, 2019, 31, 45.	0.5	3
33	Development of Microfluidic Techniques for Onsite Analysis. Bunseki Kagaku, 2021, 70, 341-349.	0.2	1
34	Analysis and Survey of PM _{2.5} from a Biological Viewpoint at Kyushu University Ito Campus. Bunseki Kagaku, 2020, 69, 741-746.	0.2	1
35	Development of a microfluidic dispensing device for multivariate data acquisition and application in molecularly imprinting hydrogel preparation. Journal of Materials Chemistry B, 2022, 10, 6664-6672.	5.8	1
36	Simple Preparation and Characterization of Viscoelastic Gels Induced by Multiple Intermolecular Interactions Using Low-Molecular-Weight Species. Bulletin of the Chemical Society of Japan, 2015, 88, 1575-1580.	3.2	0

#	Article	IF	CITATIONS
37	Simple chemical detection based on a surface-modified electroosmotic pump <i>via</i> interval immobilization. Analytical Methods, 2021, 13, 1559-1564.	2.7	0