Xiaodong Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9602022/xiaodong-chen-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21 2,294 13 23 g-index

23 2,859 10 5.41 L-index

#	Paper	IF	Citations
21	Synthesis of rattle-structured CuCo2O4 nanospheres with tunable sizes based on heterogeneous contraction and their ultrahigh performance toward ammonia borane hydrolysis. <i>Journal of Alloys and Compounds</i> , 2021 , 863, 158089	5.7	11
20	Co3O4IIuCoO2 hybrid nanoplates as a low-cost and highly active catalyst for producing hydrogen from ammonia borane. <i>New Journal of Chemistry</i> , 2021 , 45, 2688-2695	3.6	2
19	Sea-Urchin-like Hollow CuMoO4©oMoO4 Hybrid Microspheres, a Noble-Metal-like Robust Catalyst for the Fast Hydrogen Production from Ammonia Borane. <i>ACS Applied Energy Materials</i> , 2021 , 4, 633-64	12 ^{6.1}	10
18	Facile Synthesis of Boron and Nitrogen Dual-Doped Hollow Mesoporous Carbons for Efficient Reduction of 4-Nitrophenol. <i>ACS Applied Materials & Description of Action of Action Mesoporous Carbons for Efficient Reduction of Action Description (No. 1) (2016)</i>	9.5	2
17	Ni0.25Co0.75O nanowire array supported on Cu@CuO foam, an inexpensive and durable catalyst for hydrogen generation from ammonia borane. <i>Catalysis Communications</i> , 2021 , 159, 106343	3.2	O
16	Simple synthesis of Cu2OLOO nanoplates with enhanced catalytic activity for hydrogen production from ammonia borane hydrolysis. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 17164	1-1 7 717:	3 ¹⁵
15	Simple 2 D/0 D CoP Integration in a Metal-Organic Framework-Derived Bifunctional Electrocatalyst for Efficient Overall Water Splitting. <i>ChemSusChem</i> , 2020 , 13, 3495-3503	8.3	12
14	A KCl-assisted pyrolysis strategy to fabricate nitrogen-doped carbon nanotube hollow polyhedra for efficient bifunctional oxygen electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20310-203	16 ¹³	23
13	MOF-Derived Isolated Fe Atoms Implanted in N-Doped 3D Hierarchical Carbon as an Efficient ORR Electrocatalyst in Both Alkaline and Acidic Media. <i>ACS Applied Materials & Description (Company)</i> 11, 259	78-259	98 ¹⁰²
12	Ordered macro-microporous metal-organic framework single crystals. <i>Science</i> , 2018 , 359, 206-210	33.3	570
11	Multi-Level Architecture Optimization of MOF-Templated Co-Based Nanoparticles Embedded in Hollow N-Doped Carbon Polyhedra for Efficient OER and ORR. <i>ACS Catalysis</i> , 2018 , 8, 7879-7888	13.1	247
10	Solvent-Driven Selectivity Control to Either Anilines or Dicyclohexylamines in Hydrogenation of Nitroarenes over a Bifunctional Pd/MIL-101 Catalyst. <i>ACS Catalysis</i> , 2018 , 8, 10641-10648	13.1	35
9	Hollow-ZIF-templated formation of a ZnO@CNCo coreShell nanostructure for highly efficient pollutant photodegradation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9937-9945	13	111
8	Seed-induced and additive-free synthesis of oriented nanorod-assembled meso/macroporous zeolites: toward efficient and cost-effective catalysts for the MTA reaction. <i>Catalysis Science and Technology</i> , 2017 , 7, 5143-5153	5.5	22
7	Rational design of hollow N/Co-doped carbon spheres from bimetal-ZIFs for high-efficiency electrocatalysis. <i>Chemical Engineering Journal</i> , 2017 , 330, 736-745	14.7	71
6	Two micrometer fluorescence emission and energy transfer in Yb3+/Ho3+ co-doped lead silicate glass. <i>International Journal of Applied Glass Science</i> , 2017 , 8, 196-203	1.8	11
5	Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis. <i>ACS Catalysis</i> , 2016 , 6, 5887-5903	13.1	810

LIST OF PUBLICATIONS

4	Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb(2+) as template. <i>Journal of Hazardous Materials</i> , 2016 , 308, 225-32	12.8	99
3	One-step encapsulation of Pd nanoparticles in MOFs via a temperature control program. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15259-15264	13	65
2	MetalDrganic Frameworks: Encapsulation of Mono- or Bimetal Nanoparticles Inside MetalDrganic Frameworks via In situ Incorporation of Metal Precursors (Small 22/2015). <i>Small</i> , 2015 , 11, 2586-2586	11	1
1	Encapsulation of Mono- or Bimetal Nanoparticles Inside Metal-Organic Frameworks via In situ Incorporation of Metal Precursors. <i>Small</i> , 2015 , 11, 2642-8	11	73